How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector

Detalhes bibliográficos
Autor(a) principal: Costa, C. F. S.
Data de Publicação: 2016
Outros Autores: Magalhaes, N. S. [UNIFESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: http://repositorio.unifesp.br/handle/11600/49353
http://dx.doi.org/10.1088/1742-6596/716/1/012019
Resumo: It has been commonly assumed that analytic solutions can efficiently provide the direction of a gravitational wave (GW) once sufficient data is available from gravitational wave detectors. Nevertheless, we identified that such analytic solutions (based on the GW matrix reconstruction) present unforeseen theoretical and practical limitations (indeterminacies) and that for certain incoming directions they are unable to recover the latter. We present here important indeterminacy cases as well as a mathematical procedure that reduces such indeterminacies. Also, we developed a method that requires the least computational power to retrieve GW directions and which can be applied to any system of detectors able to reconstruct the GW matrix. As a test for the method, we used simulated data of the spherical, resonant mass GW detector Schenberg, which involves five oscillating modes and six transducer readouts. The results show that this method canceled indeterminacies out satisfactorily.
id UFSP_44fbce4721d9bb74acbcecd0e5414a66
oai_identifier_str oai:repositorio.unifesp.br:11600/49353
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Costa, C. F. S.Magalhaes, N. S. [UNIFESP]2019-01-21T10:29:44Z2019-01-21T10:29:44Z201611th Edoardo Amaldi Conference On Gravitational Waves (AMALDI 11). Bristol, v. 716, p. UNSP 012019, 2016.1742-6588http://repositorio.unifesp.br/handle/11600/49353http://dx.doi.org/10.1088/1742-6596/716/1/012019WOS000386960500019.pdf10.1088/1742-6596/716/1/012019WOS:000386960500019It has been commonly assumed that analytic solutions can efficiently provide the direction of a gravitational wave (GW) once sufficient data is available from gravitational wave detectors. Nevertheless, we identified that such analytic solutions (based on the GW matrix reconstruction) present unforeseen theoretical and practical limitations (indeterminacies) and that for certain incoming directions they are unable to recover the latter. We present here important indeterminacy cases as well as a mathematical procedure that reduces such indeterminacies. Also, we developed a method that requires the least computational power to retrieve GW directions and which can be applied to any system of detectors able to reconstruct the GW matrix. As a test for the method, we used simulated data of the spherical, resonant mass GW detector Schenberg, which involves five oscillating modes and six transducer readouts. The results show that this method canceled indeterminacies out satisfactorily.University of Florida, Department of Physics 2001 Museum Road, 32611-8440 Gainesville, FL, USAFederal University of Sao Paulo, Department of Exact and Earth Sciences Rua Sao Nicolau 120, 09913-030 Diadema, SP, BrazilFederal University of Sao Paulo, Department of Exact and Earth Sciences Rua Sao Nicolau 120, 09913-030 Diadema, SP, BrazilWeb of ScienceUNSP 012019engHospital Clinicas, Univ Sao Paulo11th Edoardo Amaldi Conference On Gravitational Waves (AMALDI 11)Mario-SchenbergHow to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detectorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESPORIGINALWOS000386960500019.pdfapplication/pdf1103178${dspace.ui.url}/bitstream/11600/49353/1/WOS000386960500019.pdf1211f84d7750a89576e15ac9560ddc80MD51open accessTEXTWOS000386960500019.pdf.txtWOS000386960500019.pdf.txtExtracted texttext/plain9770${dspace.ui.url}/bitstream/11600/49353/8/WOS000386960500019.pdf.txt85a8a68fa15b0449f0b78794d7d481b0MD58open accessTHUMBNAILWOS000386960500019.pdf.jpgWOS000386960500019.pdf.jpgIM Thumbnailimage/jpeg5302${dspace.ui.url}/bitstream/11600/49353/10/WOS000386960500019.pdf.jpg34433b868ec53a7424d80371baf054fbMD510open access11600/493532023-06-05 19:40:18.894open accessoai:repositorio.unifesp.br:11600/49353Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestopendoar:34652023-06-05T22:40:18Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.en.fl_str_mv How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
title How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
spellingShingle How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
Costa, C. F. S.
Mario-Schenberg
title_short How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
title_full How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
title_fullStr How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
title_full_unstemmed How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
title_sort How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the schenberg detector
author Costa, C. F. S.
author_facet Costa, C. F. S.
Magalhaes, N. S. [UNIFESP]
author_role author
author2 Magalhaes, N. S. [UNIFESP]
author2_role author
dc.contributor.author.fl_str_mv Costa, C. F. S.
Magalhaes, N. S. [UNIFESP]
dc.subject.eng.fl_str_mv Mario-Schenberg
topic Mario-Schenberg
description It has been commonly assumed that analytic solutions can efficiently provide the direction of a gravitational wave (GW) once sufficient data is available from gravitational wave detectors. Nevertheless, we identified that such analytic solutions (based on the GW matrix reconstruction) present unforeseen theoretical and practical limitations (indeterminacies) and that for certain incoming directions they are unable to recover the latter. We present here important indeterminacy cases as well as a mathematical procedure that reduces such indeterminacies. Also, we developed a method that requires the least computational power to retrieve GW directions and which can be applied to any system of detectors able to reconstruct the GW matrix. As a test for the method, we used simulated data of the spherical, resonant mass GW detector Schenberg, which involves five oscillating modes and six transducer readouts. The results show that this method canceled indeterminacies out satisfactorily.
publishDate 2016
dc.date.issued.fl_str_mv 2016
dc.date.accessioned.fl_str_mv 2019-01-21T10:29:44Z
dc.date.available.fl_str_mv 2019-01-21T10:29:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.citation.fl_str_mv 11th Edoardo Amaldi Conference On Gravitational Waves (AMALDI 11). Bristol, v. 716, p. UNSP 012019, 2016.
dc.identifier.uri.fl_str_mv http://repositorio.unifesp.br/handle/11600/49353
http://dx.doi.org/10.1088/1742-6596/716/1/012019
dc.identifier.issn.none.fl_str_mv 1742-6588
dc.identifier.file.none.fl_str_mv WOS000386960500019.pdf
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/716/1/012019
dc.identifier.wos.none.fl_str_mv WOS:000386960500019
identifier_str_mv 11th Edoardo Amaldi Conference On Gravitational Waves (AMALDI 11). Bristol, v. 716, p. UNSP 012019, 2016.
1742-6588
WOS000386960500019.pdf
10.1088/1742-6596/716/1/012019
WOS:000386960500019
url http://repositorio.unifesp.br/handle/11600/49353
http://dx.doi.org/10.1088/1742-6596/716/1/012019
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv 11th Edoardo Amaldi Conference On Gravitational Waves (AMALDI 11)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv UNSP 012019
dc.publisher.none.fl_str_mv Hospital Clinicas, Univ Sao Paulo
publisher.none.fl_str_mv Hospital Clinicas, Univ Sao Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
bitstream.url.fl_str_mv ${dspace.ui.url}/bitstream/11600/49353/1/WOS000386960500019.pdf
${dspace.ui.url}/bitstream/11600/49353/8/WOS000386960500019.pdf.txt
${dspace.ui.url}/bitstream/11600/49353/10/WOS000386960500019.pdf.jpg
bitstream.checksum.fl_str_mv 1211f84d7750a89576e15ac9560ddc80
85a8a68fa15b0449f0b78794d7d481b0
34433b868ec53a7424d80371baf054fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv
_version_ 1783460293065572352