Experimental Simulation of a Tennis Ball using Wind Tunnel

Detalhes bibliográficos
Autor(a) principal: Souza, Cesar Almiro de
Data de Publicação: 2023
Outros Autores: Campos, Julio Cesar Costa, Siqueira, Antonio Marcos de Oliveira, Treto, Pedro Casanova, Tibiriça, Alvaro Messias Bigonha, Rosa, Henrique Márcio Pereira, Brito, Rogério Fernandes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of Engineering and Exact Sciences
Texto Completo: https://periodicos.ufv.br/jcec/article/view/15179
Resumo: In this study, tennis balls were analyzed experimentally through the use of a wind tunnel with speed ranging from 1m/s to 14 m/s, which is a variation in the Reynolds number (10,000 < Re < 60,000). In this context, aerodynamic aspects of the balls were evaluated, including the position of the seam and the degree fuzz, i.e., with and without fuzz. It was possible to analyze the effect of drag on the diameter, in the investigation of the relationship between the drag coefficient (CD) and the Reynolds number (Re) for new and used balls. Graphics were generated using the Reynolds number and the Drag Coefficient in order to assess the (non) dependency of these parameters. In the measurements performed, the static balls inside the wind tunnel were considered, i.e., without rotation. Therefore, no discussions about the Magnus force are presented. The results obtained,  ? 3 to  ? 0.60, were consistent for the range of the Reynolds number investigated. High values are expected for the drag coefficient, to the range of Reynolds number examined. The position of the seam, according to the related literatures, is negligible to high values of Reynolds, i.e., Re >50,000. On the other hand, for low values of Reynolds number, it can represent a difference of up to about 9% for the CD. The balls without fluff showed the strongest influence of the position of the seam, which characterizes the influence of this parameter. The effect of fuzz seemed to be responsible for about 10% of the total drag for low values of the Reynolds number. The diameter variation was analyzed alone.
id UFV-6_ad39b4ed6da4cf33d744af85fbf5faef
oai_identifier_str oai:ojs.periodicos.ufv.br:article/15179
network_acronym_str UFV-6
network_name_str The Journal of Engineering and Exact Sciences
repository_id_str
spelling Experimental Simulation of a Tennis Ball using Wind TunnelSimulação Experimental de uma Bola de Tênis utilizando um Túnel de VentoAerodynamics. Tennis ball.Wind tunnel. Drag coefficient. Aerodinâmica. Bola de tênis. Túnel de vento. Coeficiente de Arrasto.In this study, tennis balls were analyzed experimentally through the use of a wind tunnel with speed ranging from 1m/s to 14 m/s, which is a variation in the Reynolds number (10,000 < Re < 60,000). In this context, aerodynamic aspects of the balls were evaluated, including the position of the seam and the degree fuzz, i.e., with and without fuzz. It was possible to analyze the effect of drag on the diameter, in the investigation of the relationship between the drag coefficient (CD) and the Reynolds number (Re) for new and used balls. Graphics were generated using the Reynolds number and the Drag Coefficient in order to assess the (non) dependency of these parameters. In the measurements performed, the static balls inside the wind tunnel were considered, i.e., without rotation. Therefore, no discussions about the Magnus force are presented. The results obtained,  ? 3 to  ? 0.60, were consistent for the range of the Reynolds number investigated. High values are expected for the drag coefficient, to the range of Reynolds number examined. The position of the seam, according to the related literatures, is negligible to high values of Reynolds, i.e., Re >50,000. On the other hand, for low values of Reynolds number, it can represent a difference of up to about 9% for the CD. The balls without fluff showed the strongest influence of the position of the seam, which characterizes the influence of this parameter. The effect of fuzz seemed to be responsible for about 10% of the total drag for low values of the Reynolds number. The diameter variation was analyzed alone.Neste estudo, as bolas de ténis foram analisadas experimentalmente através da utilização de túnel de vento com velocidade que varia de 1m/s a 14m/s, a qual representa uma variação no número Reynolds de 10.000  < Re  < 60.000). O método utilizado foi a avaliação dos aspectos aerodinâmicos das bolas, incluindo a posição da costura e o grau de penugem, ou seja, com e sem penugem. Foi possível analisar o efeito do arrastamento sobre o diâmetro, na investigação da relação entre o coeficiente de arraste,  e o número de Reynolds, Re, para bolas novas e usadas. Os gráficos foram gerados utilizando o número de Reynolds e o Coeficiente de Arrasto, a fim de avaliar a dependência ou não destes parâmetros. Nas medições efetuadas, foram consideradas as bolas estáticas dentro do túnel de vento, desta forma, sem rotação. Por conseguinte, não são apresentadas discussões sobre a força Magnus. Os resultados obtidos,  3 a , foram consistentes com o intervalo do número Reynolds investigado. São esperados valores elevados para o coeficiente de arrasto, para o intervalo do número de Reynolds examinado. A posição da costura, de acordo com as literaturas relacionadas, é desprezível para valores elevados de Reynolds, ou seja, superior a 50.000. Por outro lado, para valores baixos de Reynolds, pode representar uma diferença de até cerca de 9% para . As bolas sem penugem mostraram uma forte influência da posição da costura, o que caracteriza a influência deste parâmetro. O efeito da penugem parecia ser responsável por cerca de 10% do arrasto total para valores baixos de Reynolds. A variação do diâmetro foi analisada isoladamente.Universidade Federal de Viçosa - UFV2023-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1517910.18540/jcecvl9iss1pp15179-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 1 (2023); 15179-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 1 (2023); 15179-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 1 (2023); 15179-01e2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/15179/7731Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Cesar Almiro deCampos, Julio Cesar CostaSiqueira, Antonio Marcos de OliveiraTreto, Pedro CasanovaTibiriça, Alvaro Messias BigonhaRosa, Henrique Márcio PereiraBrito, Rogério Fernandes2023-02-24T18:44:16Zoai:ojs.periodicos.ufv.br:article/15179Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2023-02-24T18:44:16The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Experimental Simulation of a Tennis Ball using Wind Tunnel
Simulação Experimental de uma Bola de Tênis utilizando um Túnel de Vento
title Experimental Simulation of a Tennis Ball using Wind Tunnel
spellingShingle Experimental Simulation of a Tennis Ball using Wind Tunnel
Souza, Cesar Almiro de
Aerodynamics. Tennis ball.Wind tunnel. Drag coefficient.
Aerodinâmica. Bola de tênis. Túnel de vento. Coeficiente de Arrasto.
title_short Experimental Simulation of a Tennis Ball using Wind Tunnel
title_full Experimental Simulation of a Tennis Ball using Wind Tunnel
title_fullStr Experimental Simulation of a Tennis Ball using Wind Tunnel
title_full_unstemmed Experimental Simulation of a Tennis Ball using Wind Tunnel
title_sort Experimental Simulation of a Tennis Ball using Wind Tunnel
author Souza, Cesar Almiro de
author_facet Souza, Cesar Almiro de
Campos, Julio Cesar Costa
Siqueira, Antonio Marcos de Oliveira
Treto, Pedro Casanova
Tibiriça, Alvaro Messias Bigonha
Rosa, Henrique Márcio Pereira
Brito, Rogério Fernandes
author_role author
author2 Campos, Julio Cesar Costa
Siqueira, Antonio Marcos de Oliveira
Treto, Pedro Casanova
Tibiriça, Alvaro Messias Bigonha
Rosa, Henrique Márcio Pereira
Brito, Rogério Fernandes
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Cesar Almiro de
Campos, Julio Cesar Costa
Siqueira, Antonio Marcos de Oliveira
Treto, Pedro Casanova
Tibiriça, Alvaro Messias Bigonha
Rosa, Henrique Márcio Pereira
Brito, Rogério Fernandes
dc.subject.por.fl_str_mv Aerodynamics. Tennis ball.Wind tunnel. Drag coefficient.
Aerodinâmica. Bola de tênis. Túnel de vento. Coeficiente de Arrasto.
topic Aerodynamics. Tennis ball.Wind tunnel. Drag coefficient.
Aerodinâmica. Bola de tênis. Túnel de vento. Coeficiente de Arrasto.
description In this study, tennis balls were analyzed experimentally through the use of a wind tunnel with speed ranging from 1m/s to 14 m/s, which is a variation in the Reynolds number (10,000 < Re < 60,000). In this context, aerodynamic aspects of the balls were evaluated, including the position of the seam and the degree fuzz, i.e., with and without fuzz. It was possible to analyze the effect of drag on the diameter, in the investigation of the relationship between the drag coefficient (CD) and the Reynolds number (Re) for new and used balls. Graphics were generated using the Reynolds number and the Drag Coefficient in order to assess the (non) dependency of these parameters. In the measurements performed, the static balls inside the wind tunnel were considered, i.e., without rotation. Therefore, no discussions about the Magnus force are presented. The results obtained,  ? 3 to  ? 0.60, were consistent for the range of the Reynolds number investigated. High values are expected for the drag coefficient, to the range of Reynolds number examined. The position of the seam, according to the related literatures, is negligible to high values of Reynolds, i.e., Re >50,000. On the other hand, for low values of Reynolds number, it can represent a difference of up to about 9% for the CD. The balls without fluff showed the strongest influence of the position of the seam, which characterizes the influence of this parameter. The effect of fuzz seemed to be responsible for about 10% of the total drag for low values of the Reynolds number. The diameter variation was analyzed alone.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/15179
10.18540/jcecvl9iss1pp15179-01e
url https://periodicos.ufv.br/jcec/article/view/15179
identifier_str_mv 10.18540/jcecvl9iss1pp15179-01e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/15179/7731
dc.rights.driver.fl_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 9 No. 1 (2023); 15179-01e
The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 1 (2023); 15179-01e
The Journal of Engineering and Exact Sciences; v. 9 n. 1 (2023); 15179-01e
2527-1075
reponame:The Journal of Engineering and Exact Sciences
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str The Journal of Engineering and Exact Sciences
collection The Journal of Engineering and Exact Sciences
repository.name.fl_str_mv The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv
_version_ 1798313316061282304