Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs

Detalhes bibliográficos
Autor(a) principal: Godinho, R. M.
Data de Publicação: 2017
Outros Autores: Bergsma, R., Silva, F. F., Sevillano, C. A., Knol, E. F., Lopes, M. S., Lope, P. S., Bastiaansen, J. W. M., Guimarães, S. E. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1093/jas/skx011
http://www.locus.ufv.br/handle/123456789/19038
Resumo: Selection for feed efficiency (FE) is a strategy to reduce the production costs per unit of animal product, which is one of the major objectives of current animal breeding programs. In pig breeding, selection for FE and other traits traditionally takes place based on purebred pig (PB) performance at the nucleus level, while pork production typically makes use of crossbred animals (CB). The success of this selection, therefore, depends on the genetic correlation between the performance of PB and CB (rpc) and on the genetic correlation (rg) between FE and the other traits that are currently under selection. Different traits are being used to account for FE, but the rpc has been reported only for feed conversion rate. Therefore, this study aimed 1) to estimate the rpc for growth performance, carcass, and FE traits; 2) to estimate rg between traits within PB and CB populations; and 3) to compare three different traits representing FE: feed conversion rate, residual energy intake (REI), and residual feed intake (RFI). Phenotypes of 194,445 PB animals from 23 nucleus farms, and 46,328 CB animals from three farms where research is conducted under near commercial production conditions were available for this study. From these, 22,984 PB and 8,657 CB presented records for feed intake. The PB population consisted of five sire and four dam lines, and the CB population consisted of terminal cross-progeny generated by crossing sires from one of the five PB sire lines with commercially available two-way maternal sow crosses. Estimates of rpc ranged from 0.61 to 0.71 for growth performance traits, from 0.75 to 0.82 for carcass traits, and from 0.62 to 0.67 for FE traits. Estimates of rg between growth performance, carcass, and FE traits differed within PB and CB. REI and RFI showed substantial positive rg estimates in PB (0.84) and CB (0.90) populations. The magnitudes of rpc estimates indicate that genetic progress is being realized in CB at the production level from selection on PB performance at nucleus level. However, including CB phenotypes recorded on production farms, when predicting breeding values, has the potential to increase genetic progress for these traits in CB. Given the genetic correlations with growth performance traits and the genetic correlation between the performance of PB and CB, REI is an attractive FE parameter for a breeding program.
id UFV_14d81c811acfd62a7402fb8c47a6bf2e
oai_identifier_str oai:locus.ufv.br:123456789/19038
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Godinho, R. M.Bergsma, R.Silva, F. F.Sevillano, C. A.Knol, E. F.Lopes, M. S.Lope, P. S.Bastiaansen, J. W. M.Guimarães, S. E. F.2018-04-23T14:54:50Z2018-04-23T14:54:50Z2017-11-2315253163https://doi.org/10.1093/jas/skx011http://www.locus.ufv.br/handle/123456789/19038Selection for feed efficiency (FE) is a strategy to reduce the production costs per unit of animal product, which is one of the major objectives of current animal breeding programs. In pig breeding, selection for FE and other traits traditionally takes place based on purebred pig (PB) performance at the nucleus level, while pork production typically makes use of crossbred animals (CB). The success of this selection, therefore, depends on the genetic correlation between the performance of PB and CB (rpc) and on the genetic correlation (rg) between FE and the other traits that are currently under selection. Different traits are being used to account for FE, but the rpc has been reported only for feed conversion rate. Therefore, this study aimed 1) to estimate the rpc for growth performance, carcass, and FE traits; 2) to estimate rg between traits within PB and CB populations; and 3) to compare three different traits representing FE: feed conversion rate, residual energy intake (REI), and residual feed intake (RFI). Phenotypes of 194,445 PB animals from 23 nucleus farms, and 46,328 CB animals from three farms where research is conducted under near commercial production conditions were available for this study. From these, 22,984 PB and 8,657 CB presented records for feed intake. The PB population consisted of five sire and four dam lines, and the CB population consisted of terminal cross-progeny generated by crossing sires from one of the five PB sire lines with commercially available two-way maternal sow crosses. Estimates of rpc ranged from 0.61 to 0.71 for growth performance traits, from 0.75 to 0.82 for carcass traits, and from 0.62 to 0.67 for FE traits. Estimates of rg between growth performance, carcass, and FE traits differed within PB and CB. REI and RFI showed substantial positive rg estimates in PB (0.84) and CB (0.90) populations. The magnitudes of rpc estimates indicate that genetic progress is being realized in CB at the production level from selection on PB performance at nucleus level. However, including CB phenotypes recorded on production farms, when predicting breeding values, has the potential to increase genetic progress for these traits in CB. Given the genetic correlations with growth performance traits and the genetic correlation between the performance of PB and CB, REI is an attractive FE parameter for a breeding program.engJournal of Animal Sciencev. 96, Issue 3, p. 817–829, April 2018American Society of Animal Scienceinfo:eu-repo/semantics/openAccessBreeding programCarcass traitsFeed efficiencyGrowthGenetic correlationsGrowing–finishing pigsGenetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf223700https://locus.ufv.br//bitstream/123456789/19038/1/artigo.pdf4cff15da4cecf1a6598f7fae7a97ac03MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19038/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4615https://locus.ufv.br//bitstream/123456789/19038/3/artigo.pdf.jpga19d9c00026b6f05f5857977acb04465MD53123456789/190382018-04-23 23:01:08.886oai:locus.ufv.br:123456789/19038Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-04-24T02:01:08LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
title Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
spellingShingle Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
Godinho, R. M.
Breeding program
Carcass traits
Feed efficiency
Growth
Genetic correlations
Growing–finishing pigs
title_short Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
title_full Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
title_fullStr Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
title_full_unstemmed Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
title_sort Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs
author Godinho, R. M.
author_facet Godinho, R. M.
Bergsma, R.
Silva, F. F.
Sevillano, C. A.
Knol, E. F.
Lopes, M. S.
Lope, P. S.
Bastiaansen, J. W. M.
Guimarães, S. E. F.
author_role author
author2 Bergsma, R.
Silva, F. F.
Sevillano, C. A.
Knol, E. F.
Lopes, M. S.
Lope, P. S.
Bastiaansen, J. W. M.
Guimarães, S. E. F.
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Godinho, R. M.
Bergsma, R.
Silva, F. F.
Sevillano, C. A.
Knol, E. F.
Lopes, M. S.
Lope, P. S.
Bastiaansen, J. W. M.
Guimarães, S. E. F.
dc.subject.pt-BR.fl_str_mv Breeding program
Carcass traits
Feed efficiency
Growth
Genetic correlations
Growing–finishing pigs
topic Breeding program
Carcass traits
Feed efficiency
Growth
Genetic correlations
Growing–finishing pigs
description Selection for feed efficiency (FE) is a strategy to reduce the production costs per unit of animal product, which is one of the major objectives of current animal breeding programs. In pig breeding, selection for FE and other traits traditionally takes place based on purebred pig (PB) performance at the nucleus level, while pork production typically makes use of crossbred animals (CB). The success of this selection, therefore, depends on the genetic correlation between the performance of PB and CB (rpc) and on the genetic correlation (rg) between FE and the other traits that are currently under selection. Different traits are being used to account for FE, but the rpc has been reported only for feed conversion rate. Therefore, this study aimed 1) to estimate the rpc for growth performance, carcass, and FE traits; 2) to estimate rg between traits within PB and CB populations; and 3) to compare three different traits representing FE: feed conversion rate, residual energy intake (REI), and residual feed intake (RFI). Phenotypes of 194,445 PB animals from 23 nucleus farms, and 46,328 CB animals from three farms where research is conducted under near commercial production conditions were available for this study. From these, 22,984 PB and 8,657 CB presented records for feed intake. The PB population consisted of five sire and four dam lines, and the CB population consisted of terminal cross-progeny generated by crossing sires from one of the five PB sire lines with commercially available two-way maternal sow crosses. Estimates of rpc ranged from 0.61 to 0.71 for growth performance traits, from 0.75 to 0.82 for carcass traits, and from 0.62 to 0.67 for FE traits. Estimates of rg between growth performance, carcass, and FE traits differed within PB and CB. REI and RFI showed substantial positive rg estimates in PB (0.84) and CB (0.90) populations. The magnitudes of rpc estimates indicate that genetic progress is being realized in CB at the production level from selection on PB performance at nucleus level. However, including CB phenotypes recorded on production farms, when predicting breeding values, has the potential to increase genetic progress for these traits in CB. Given the genetic correlations with growth performance traits and the genetic correlation between the performance of PB and CB, REI is an attractive FE parameter for a breeding program.
publishDate 2017
dc.date.issued.fl_str_mv 2017-11-23
dc.date.accessioned.fl_str_mv 2018-04-23T14:54:50Z
dc.date.available.fl_str_mv 2018-04-23T14:54:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1093/jas/skx011
http://www.locus.ufv.br/handle/123456789/19038
dc.identifier.issn.none.fl_str_mv 15253163
identifier_str_mv 15253163
url https://doi.org/10.1093/jas/skx011
http://www.locus.ufv.br/handle/123456789/19038
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 96, Issue 3, p. 817–829, April 2018
dc.rights.driver.fl_str_mv American Society of Animal Science
info:eu-repo/semantics/openAccess
rights_invalid_str_mv American Society of Animal Science
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Journal of Animal Science
publisher.none.fl_str_mv Journal of Animal Science
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/19038/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/19038/2/license.txt
https://locus.ufv.br//bitstream/123456789/19038/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 4cff15da4cecf1a6598f7fae7a97ac03
8a4605be74aa9ea9d79846c1fba20a33
a19d9c00026b6f05f5857977acb04465
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1798053265811701760