Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar

Detalhes bibliográficos
Autor(a) principal: Baffa Júnior, José Carlos
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/460
Resumo: The ethyl carbamate (EC) or urethane is an ethyl ester of carbamic acid that occurs at low levels (ng / L or mg / L) in many fermented foods such as wines and spirits, whiskey and rum. The EC is genotoxic and carcinogenic to a large number of species including rats, mice and monkeys. The compound has been classified by the World Health Organiz ation (Agency for Research on Cancer) as belonging to group 2A, which means that it is carcinogenic to humans. Its limit of acceptable daily intake (ADI) is 0.3 ng.Kg-1 per day, but that level was calculated by studies in foods such as bread and fermented milk products. The spirits were not included in these calculations despite being the largest products were contaminated by ethyl carbamate, reaching values of 12 mg / L. So drinks like rum should be considered a major source of this toxic compound, even in countries like Brazil, where consumption of the product is high. The Ministry of Agriculture and Livestock and Food Supply of Brazil by Instruction No. 13, June 21, 2005, proposes 150 mg / L as the upper limit of the contaminant in cachaça. However there is no knowledge of (s) your (s) route (s) of training in the production of rum. Three hypotheses are presented, but need to be confirmed by further studies. First there is the possibility of urea, derived from the metabolism of the main process of yeast, Saccharomyces cerevisiae, reacts with ethanol to form ethyl carbamate during the fermentation process. To analyze this hypothesis we analyzed the process of fermentation aliquots were removed for analysis of the amount of the compound. The content of ethyl carbamate after fermentation was 122,076 microg.L -1. The hypothesis was confirmed by increasing the concentration of urea in the broth and hence promote further formation of carbamate. We analyzed the distillation step in fractions head, heart and tail that had content microg.L 59700-1, 52 μg.L-1-1 microg.L and 1570 CE respectively. To the residue contained in the copper still, the stillage concentration of ethyl carbamate was 53,070 μg.L-1. Another hypothesis was verified a chain of reactions involving compounds glicocianogênicos using copper as catalyst for the formation of ethyl carbamate. In this study we can conclude that there is more than one mechanism of formation of ethyl carbamate during fermentation. The second mechanism is related to cyanogenic compounds that undergo oxidation releasing the cyanide reacts with ethanol to form EC. Finally, a third mechanism is correlated with the concentration of arginine, even at low concentration in the urea cycle would provide a greater formation of urea and a larger formation of ethyl carbamate. Fermentation is the step that produces the most ethyl carbamate, in mg levels may be associated with the combination of these three training courses. Finally the possibility of a photochemical reaction after distillation for ethyl carbamate formation involving ultraviolet light, and copper compound has been verified glicocianogênicos. Cachaças bottles packed in amber, tranaparente, green and blue, with and without copper were evaluated for 90 days. Returned results where after 90 days of storage show that copper is the catalyst of the reaction, because the treatments without copper had a lower mean concentration of ethyl carbamate to the end (62 μg.L-1). The treatment with 5.0 mg.L-1 and 10 mg.L-1 of copper averaged 164 and 228 μg.L-1content of CE, respectively. Also after 90 days of analysis we can say that the higher the alcohol content higher the concentration of carbamate formed. The levels of alcohol assessed 40 º GL, 45 GL and 50 had an average GL was 115.98 μg.L-1 of EC, 131.65 and 150.67 μg.L-1. In experiments that would evaluate the interference of light, specifically ultraviolet amber bottles exhibited an average content of carbamate 60% less than the bottle green, blue and transparent to the end of 90 days of storage. As for the cyanogenic compounds in the distillate absence of ultraviolet light (amber bottle) achieved a reduction of only 9%, 10% and 14% in cachaças without copper, copper in the limit (5.0 mg L-1) and copper 2 times the limit (10 mg.L-1) respectively. But in the presence of ultraviolet light to reduce cyanogenic compounds was 12%, 18% and 24% without copper, copper in the limit (5.0 mg L-1) and copper 2 times the limit (10 mg.L-1), respectively. We can then conclude that the oxidation process of cyanogenic compounds by ultraviolet light and its conversion into ethyl carbamate by reaction with ethanol exists. Therefore, as preventive measures in order to prevent the formation of carbamate, we recommend storage of liquor bottles in amber in the absence of copper after distillation with a collection of separate fractions (head, heart and tail).
id UFV_28abfa9c1bf44714c354413cfe24e647
oai_identifier_str oai:locus.ufv.br:123456789/460
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Baffa Júnior, José Carloshttp://lattes.cnpq.br/0849925205351713Chaves, José Benício Paeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787754A9Pereira, José Antonio Marqueshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787246H6Soares, Nilda de Fatima FerreiraSOARES, N. F. F.Guimarães, Valéria Montezehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3Silva, Washington Azevedo dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4765007Y5Reis Filho, João Cruzhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4706265D62015-03-26T12:25:08Z2013-04-192015-03-26T12:25:08Z2011-02-09BAFFA JÚNIOR, José Carlos. Mechanisms for the formation of ethyl carbamate in production and storage of sugar cane. 2011. 95 f. Tese (Doutorado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2011.http://locus.ufv.br/handle/123456789/460The ethyl carbamate (EC) or urethane is an ethyl ester of carbamic acid that occurs at low levels (ng / L or mg / L) in many fermented foods such as wines and spirits, whiskey and rum. The EC is genotoxic and carcinogenic to a large number of species including rats, mice and monkeys. The compound has been classified by the World Health Organiz ation (Agency for Research on Cancer) as belonging to group 2A, which means that it is carcinogenic to humans. Its limit of acceptable daily intake (ADI) is 0.3 ng.Kg-1 per day, but that level was calculated by studies in foods such as bread and fermented milk products. The spirits were not included in these calculations despite being the largest products were contaminated by ethyl carbamate, reaching values of 12 mg / L. So drinks like rum should be considered a major source of this toxic compound, even in countries like Brazil, where consumption of the product is high. The Ministry of Agriculture and Livestock and Food Supply of Brazil by Instruction No. 13, June 21, 2005, proposes 150 mg / L as the upper limit of the contaminant in cachaça. However there is no knowledge of (s) your (s) route (s) of training in the production of rum. Three hypotheses are presented, but need to be confirmed by further studies. First there is the possibility of urea, derived from the metabolism of the main process of yeast, Saccharomyces cerevisiae, reacts with ethanol to form ethyl carbamate during the fermentation process. To analyze this hypothesis we analyzed the process of fermentation aliquots were removed for analysis of the amount of the compound. The content of ethyl carbamate after fermentation was 122,076 microg.L -1. The hypothesis was confirmed by increasing the concentration of urea in the broth and hence promote further formation of carbamate. We analyzed the distillation step in fractions head, heart and tail that had content microg.L 59700-1, 52 μg.L-1-1 microg.L and 1570 CE respectively. To the residue contained in the copper still, the stillage concentration of ethyl carbamate was 53,070 μg.L-1. Another hypothesis was verified a chain of reactions involving compounds glicocianogênicos using copper as catalyst for the formation of ethyl carbamate. In this study we can conclude that there is more than one mechanism of formation of ethyl carbamate during fermentation. The second mechanism is related to cyanogenic compounds that undergo oxidation releasing the cyanide reacts with ethanol to form EC. Finally, a third mechanism is correlated with the concentration of arginine, even at low concentration in the urea cycle would provide a greater formation of urea and a larger formation of ethyl carbamate. Fermentation is the step that produces the most ethyl carbamate, in mg levels may be associated with the combination of these three training courses. Finally the possibility of a photochemical reaction after distillation for ethyl carbamate formation involving ultraviolet light, and copper compound has been verified glicocianogênicos. Cachaças bottles packed in amber, tranaparente, green and blue, with and without copper were evaluated for 90 days. Returned results where after 90 days of storage show that copper is the catalyst of the reaction, because the treatments without copper had a lower mean concentration of ethyl carbamate to the end (62 μg.L-1). The treatment with 5.0 mg.L-1 and 10 mg.L-1 of copper averaged 164 and 228 μg.L-1content of CE, respectively. Also after 90 days of analysis we can say that the higher the alcohol content higher the concentration of carbamate formed. The levels of alcohol assessed 40 º GL, 45 GL and 50 had an average GL was 115.98 μg.L-1 of EC, 131.65 and 150.67 μg.L-1. In experiments that would evaluate the interference of light, specifically ultraviolet amber bottles exhibited an average content of carbamate 60% less than the bottle green, blue and transparent to the end of 90 days of storage. As for the cyanogenic compounds in the distillate absence of ultraviolet light (amber bottle) achieved a reduction of only 9%, 10% and 14% in cachaças without copper, copper in the limit (5.0 mg L-1) and copper 2 times the limit (10 mg.L-1) respectively. But in the presence of ultraviolet light to reduce cyanogenic compounds was 12%, 18% and 24% without copper, copper in the limit (5.0 mg L-1) and copper 2 times the limit (10 mg.L-1), respectively. We can then conclude that the oxidation process of cyanogenic compounds by ultraviolet light and its conversion into ethyl carbamate by reaction with ethanol exists. Therefore, as preventive measures in order to prevent the formation of carbamate, we recommend storage of liquor bottles in amber in the absence of copper after distillation with a collection of separate fractions (head, heart and tail).O carbamato de etila (CE) ou uretana é um éster de etila do ácido carbâmico que ocorre em níveis baixos (ng/L ou mg/L) em muitos alimentos fermentados e bebidas destiladas como vinhos, whisky e cachaças. O CE é genotóxico e carcinogênico para um grande número de espécies como ratos, camundongos e macacos. O composto foi classificado pela Organização Mundial da Saúde (Agência de Pesquisa do Câncer) como pertencente ao grupo 2A, o que significa que é cancerígeno ao homem. O seu limite de ingestão diária aceitável (IDA) é de 0,3 ng.Kg-1 por dia, porém esse nível foi calculado através de estudos em alimentos como pão e produtos fermentados do leite. As bebidas destiladas não foram incluídas nesses cálculos apesar de serem os produtos que maior apresentaram contaminação pelo carbamato de etila, alcançando valores de 12 mg/L. Portanto bebidas como a cachaça devem ser consideradas uma das principais fontes desse composto tóxico, ainda mais em países como o Brasil onde o consumo do produto é elevado. O Ministério da Agricultura e Pecuária e Abastecimento brasileiro através da Instrução Normativa Nº 13 de 21 de junho de 2005, propõe 150 μg/L como limite máximo deste contaminante em cachaças. Entretanto não se tem o conhecimento da(s) sua(s) via(s) de formação no processo de produção da cachaça. Três hipóteses são apresentadas, mas necessitam serem confirmadas por estudos mais aprofundados. Em primeiro existe a possibilidade da uréia, proveniente do metabolismo da principal levedura do processo, accharomyces cerevisiae, reagir com etanol e formar o carbamato de etila durante o processo de fermentação. Para analisarmos esta hipótese analisamos o processo de fermentação alíquotas foram retiradas para análises da quantidade do composto. O teor de carbamato de etila após a fermentação foi de 122076 μg.L -1. A hipótese foi confirmada ao aumentar a concentração de ureia no caldo e consequentemente promover uma maior formação de carbamato. Analisamos a etapa de destilação em suas frações cabeça, coração e cauda que apresentaram teor de 59.700 μg.L-1, 52 μg.L-1 e 1.570 μg.L-1 de CE respectivamente. Para o resíduo contido no alambique de cobre, o vinhoto a concentração de carbamato de etila foi de 53.070 μg.L-1. Outra hipótese verificada foi uma cadeia de reações envolvendo compostos glicocianogênicos utilizando o cobre como catalisador para formação do carbamato de etila. Nesse estudo podemos concluir que existe mais de um mecanismo de formação do carbamato de etila durante a fermentação. O segundo mecanismo está relacionado ao teor de compostos cianogênicos que sofre oxidação liberando o cianeto que reage com etanol para formação de CE. Por fim, um terceiro mecanismo está correlacionado com a concentração do aminoácido arginina, mesmo em pequena concentração entraria no ciclo da ureia proporcionando uma maior formação de ureia e com isso maior formação do carbamato de etila. A fermentação é a etapa que mais produz o carbamato de etila, em níveis de mg, bem acima do permitido pela legislação brasileira. Essa alta concentração ao final das 24 horas pode estar associada a combinação dessas 3 vias de formação. Por fim a possibilidade de uma reação fotoquímica pós-destilação para formação do carbamato de etila envolvendo luz ultravioleta, cobre e composto glicocianogênicos foi verificada. Cachaças condicionadas em garrafas âmbar, tranaparente, verde e azul, com e sem cobre foram avaliadas por 90 dias. Obtivemos resultados onde após 90 dias de estocagem mostram que o cobre é o catalisador da reação, pois os tratamentos sem cobre obtiveram uma média menor na concentração de carbamato de etila ao final (62 μg.L-1). Os tratamentos com 5,0 mg.L-1 e 10 mg.L-1 de cobre tiveram em média 164 μg.L-1 e 228 μg.L-1 de teor de CE, respectivamente. Também após 90 dias de análises podemos afirmar que quanto maior o teor alcoólico maior a concentração de carbamato formado. Os teores alcoólicos avaliados de 40º GL, 45º GL e 50º GL apresentaram média de CE foi de 115,98 μg.L-1, 131,65 μg.L-1 e 150,67 μg.L-1. Nos experimentos que avaliariam a interferência da luz, especificamente a ultravioleta, as garrafas âmbar apresentaram em média um teor de carbamato 60 % a menos que as garrafas verdes, azuis e transparentes ao final dos 90 dias de estocagem. Quanto ao teor de compostos cianogênicos o destilado na ausência de luz ultravioleta (garrafa âmbar) obteve uma redução de apenas 9 %, 10 % e 14 % nas cachaças sem cobre, cobre no limite (5,0 mg.L-1) e cobre 2 vezes o limite (10 mg.L-1) respectivamente. Porém na presença da luz ultravioleta a redução de compostos cianogênicos foi de 12 %, 18 % e 24 % sem cobre, cobre no limite (5,0 mg.L-1) e cobre 2 vezes o limite (10 mg.L-1) respectivamente. Podemos então concluir que o processo de oxidação dos compostos cianogênicos através da luz ultravioleta e a sua conversão em carbamato de etila pela reação com etanol existe. Portanto, como medidas preventivas afim de evitar a formação do carbamato, recomendamos a estocagem da cachaça em garrafas âmbar na ausência de cobre após uma destilação com coleta separada das frações (cabeça, coração e cauda).Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaDoutorado em Ciência e Tecnologia de AlimentosUFVBRCiência de Alimentos; Tecnologia de Alimentos; Engenharia de AlimentosCarbamato de etilaCachaçaFermentaçãoGC/MSEthyl carbamateCachaçaFermentationGC/MSCNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOSMecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcarMechanisms for the formation of ethyl carbamate in production and storage of sugar caneinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf831081https://locus.ufv.br//bitstream/123456789/460/1/texto%20completo.pdf4ea7f51b72d883fa47d37fac286dd217MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain143431https://locus.ufv.br//bitstream/123456789/460/2/texto%20completo.pdf.txtd313fd6fb98a60fc9cee31018ba1eb43MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3550https://locus.ufv.br//bitstream/123456789/460/3/texto%20completo.pdf.jpg7b710e99d85008b7c851911f397a3104MD53123456789/4602016-04-06 23:06:31.607oai:locus.ufv.br:123456789/460Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-07T02:06:31LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
dc.title.alternative.eng.fl_str_mv Mechanisms for the formation of ethyl carbamate in production and storage of sugar cane
title Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
spellingShingle Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
Baffa Júnior, José Carlos
Carbamato de etila
Cachaça
Fermentação
GC/MS
Ethyl carbamate
Cachaça
Fermentation
GC/MS
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
title_short Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
title_full Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
title_fullStr Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
title_full_unstemmed Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
title_sort Mecanismos de formação do carbamato de etila durante a produção e estocagem de aguardente de cana-de-açúcar
author Baffa Júnior, José Carlos
author_facet Baffa Júnior, José Carlos
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/0849925205351713
dc.contributor.author.fl_str_mv Baffa Júnior, José Carlos
dc.contributor.advisor-co1.fl_str_mv Chaves, José Benício Paes
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787754A9
dc.contributor.advisor-co2.fl_str_mv Pereira, José Antonio Marques
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787246H6
dc.contributor.advisor1.fl_str_mv Soares, Nilda de Fatima Ferreira
dc.contributor.advisor1Lattes.fl_str_mv SOARES, N. F. F.
dc.contributor.referee1.fl_str_mv Guimarães, Valéria Monteze
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3
dc.contributor.referee2.fl_str_mv Silva, Washington Azevedo da
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4765007Y5
dc.contributor.referee3.fl_str_mv Reis Filho, João Cruz
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4706265D6
contributor_str_mv Chaves, José Benício Paes
Pereira, José Antonio Marques
Soares, Nilda de Fatima Ferreira
Guimarães, Valéria Monteze
Silva, Washington Azevedo da
Reis Filho, João Cruz
dc.subject.por.fl_str_mv Carbamato de etila
Cachaça
Fermentação
GC/MS
topic Carbamato de etila
Cachaça
Fermentação
GC/MS
Ethyl carbamate
Cachaça
Fermentation
GC/MS
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
dc.subject.eng.fl_str_mv Ethyl carbamate
Cachaça
Fermentation
GC/MS
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
description The ethyl carbamate (EC) or urethane is an ethyl ester of carbamic acid that occurs at low levels (ng / L or mg / L) in many fermented foods such as wines and spirits, whiskey and rum. The EC is genotoxic and carcinogenic to a large number of species including rats, mice and monkeys. The compound has been classified by the World Health Organiz ation (Agency for Research on Cancer) as belonging to group 2A, which means that it is carcinogenic to humans. Its limit of acceptable daily intake (ADI) is 0.3 ng.Kg-1 per day, but that level was calculated by studies in foods such as bread and fermented milk products. The spirits were not included in these calculations despite being the largest products were contaminated by ethyl carbamate, reaching values of 12 mg / L. So drinks like rum should be considered a major source of this toxic compound, even in countries like Brazil, where consumption of the product is high. The Ministry of Agriculture and Livestock and Food Supply of Brazil by Instruction No. 13, June 21, 2005, proposes 150 mg / L as the upper limit of the contaminant in cachaça. However there is no knowledge of (s) your (s) route (s) of training in the production of rum. Three hypotheses are presented, but need to be confirmed by further studies. First there is the possibility of urea, derived from the metabolism of the main process of yeast, Saccharomyces cerevisiae, reacts with ethanol to form ethyl carbamate during the fermentation process. To analyze this hypothesis we analyzed the process of fermentation aliquots were removed for analysis of the amount of the compound. The content of ethyl carbamate after fermentation was 122,076 microg.L -1. The hypothesis was confirmed by increasing the concentration of urea in the broth and hence promote further formation of carbamate. We analyzed the distillation step in fractions head, heart and tail that had content microg.L 59700-1, 52 μg.L-1-1 microg.L and 1570 CE respectively. To the residue contained in the copper still, the stillage concentration of ethyl carbamate was 53,070 μg.L-1. Another hypothesis was verified a chain of reactions involving compounds glicocianogênicos using copper as catalyst for the formation of ethyl carbamate. In this study we can conclude that there is more than one mechanism of formation of ethyl carbamate during fermentation. The second mechanism is related to cyanogenic compounds that undergo oxidation releasing the cyanide reacts with ethanol to form EC. Finally, a third mechanism is correlated with the concentration of arginine, even at low concentration in the urea cycle would provide a greater formation of urea and a larger formation of ethyl carbamate. Fermentation is the step that produces the most ethyl carbamate, in mg levels may be associated with the combination of these three training courses. Finally the possibility of a photochemical reaction after distillation for ethyl carbamate formation involving ultraviolet light, and copper compound has been verified glicocianogênicos. Cachaças bottles packed in amber, tranaparente, green and blue, with and without copper were evaluated for 90 days. Returned results where after 90 days of storage show that copper is the catalyst of the reaction, because the treatments without copper had a lower mean concentration of ethyl carbamate to the end (62 μg.L-1). The treatment with 5.0 mg.L-1 and 10 mg.L-1 of copper averaged 164 and 228 μg.L-1content of CE, respectively. Also after 90 days of analysis we can say that the higher the alcohol content higher the concentration of carbamate formed. The levels of alcohol assessed 40 º GL, 45 GL and 50 had an average GL was 115.98 μg.L-1 of EC, 131.65 and 150.67 μg.L-1. In experiments that would evaluate the interference of light, specifically ultraviolet amber bottles exhibited an average content of carbamate 60% less than the bottle green, blue and transparent to the end of 90 days of storage. As for the cyanogenic compounds in the distillate absence of ultraviolet light (amber bottle) achieved a reduction of only 9%, 10% and 14% in cachaças without copper, copper in the limit (5.0 mg L-1) and copper 2 times the limit (10 mg.L-1) respectively. But in the presence of ultraviolet light to reduce cyanogenic compounds was 12%, 18% and 24% without copper, copper in the limit (5.0 mg L-1) and copper 2 times the limit (10 mg.L-1), respectively. We can then conclude that the oxidation process of cyanogenic compounds by ultraviolet light and its conversion into ethyl carbamate by reaction with ethanol exists. Therefore, as preventive measures in order to prevent the formation of carbamate, we recommend storage of liquor bottles in amber in the absence of copper after distillation with a collection of separate fractions (head, heart and tail).
publishDate 2011
dc.date.issued.fl_str_mv 2011-02-09
dc.date.available.fl_str_mv 2013-04-19
2015-03-26T12:25:08Z
dc.date.accessioned.fl_str_mv 2015-03-26T12:25:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BAFFA JÚNIOR, José Carlos. Mechanisms for the formation of ethyl carbamate in production and storage of sugar cane. 2011. 95 f. Tese (Doutorado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2011.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/460
identifier_str_mv BAFFA JÚNIOR, José Carlos. Mechanisms for the formation of ethyl carbamate in production and storage of sugar cane. 2011. 95 f. Tese (Doutorado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2011.
url http://locus.ufv.br/handle/123456789/460
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Doutorado em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/460/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/460/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/460/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 4ea7f51b72d883fa47d37fac286dd217
d313fd6fb98a60fc9cee31018ba1eb43
7b710e99d85008b7c851911f397a3104
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213133291782144