Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress

Detalhes bibliográficos
Autor(a) principal: Silva, Vânia Aparecida
Data de Publicação: 2018
Outros Autores: Prado, Fernanda Manso, Antunes, Werner Camargos, Paiva, Rita Márcia Cardoso, Ferrão, Maria Amélia Gava, Andrade, Alan Carvalho, Mascio, Paolo Di, Loureiro, Marcelo Ehlers, DaMatta, Fábio Murilo, Almeida, Andréa Miyasaka
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1007/s10725-018-0385-5
http://www.locus.ufv.br/handle/123456789/22047
Resumo: The role of abscisic acid (ABA) in drought tolerance of Coffea canephora is unknown. To determine whether ABA is associated with drought tolerance and if the use of tolerant rootstocks could increase ABA and drought tolerance, we performed reciprocal grafting experiments between clones with contrasting tolerance to drought (clone 109, sensitive; and clone 120, tolerant). Plants were grown in large (120 L) pots in a greenhouse and subjected to drought stress by withholding irrigation. The non-grafted 120 plants and graft treatments with 120 as a rootstock showed a slower reduction of predawn leaf water potential (Ψpd) and a lower negative carbon isotopic composition ratio compared with the other grafting combinations in response to drought. The same 120 graft treatments also showed higher leaf ABA concentrations, lower levels of electrolyte leakage, and lower activities of ascorbate peroxidase and catalase under moderate (Ψpd = − 1.0 or − 1.5 MPa) and severe (Ψpd = − 3.0 MPa) drought. Root ABA concentrations were higher in plants with the 120 rootstocks regardless of watering regime. The 120 shoots could also contribute to drought tolerance because treatment with 120/109 rootstock/scion combination showed postponed dehydration, higher leaf ABA concentration, and lower leaf electrolyte leakage compared with the sensitive clone. We conclude that both the shoot and root systems of the tolerant clone can increase the concentrations of ABA in leaves in response to drought. This further suggests that ABA is associated with a delayed onset of severe water deficit and decreased oxidative damage in C. canephora.
id UFV_4ddc9b3f46a8fb9640d4f5710ceabddf
oai_identifier_str oai:locus.ufv.br:123456789/22047
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Silva, Vânia AparecidaPrado, Fernanda MansoAntunes, Werner CamargosPaiva, Rita Márcia CardosoFerrão, Maria Amélia GavaAndrade, Alan CarvalhoMascio, Paolo DiLoureiro, Marcelo EhlersDaMatta, Fábio MuriloAlmeida, Andréa Miyasaka2018-09-27T01:13:15Z2018-09-27T01:13:15Z2018-03-0815735087http://dx.doi.org/10.1007/s10725-018-0385-5http://www.locus.ufv.br/handle/123456789/22047The role of abscisic acid (ABA) in drought tolerance of Coffea canephora is unknown. To determine whether ABA is associated with drought tolerance and if the use of tolerant rootstocks could increase ABA and drought tolerance, we performed reciprocal grafting experiments between clones with contrasting tolerance to drought (clone 109, sensitive; and clone 120, tolerant). Plants were grown in large (120 L) pots in a greenhouse and subjected to drought stress by withholding irrigation. The non-grafted 120 plants and graft treatments with 120 as a rootstock showed a slower reduction of predawn leaf water potential (Ψpd) and a lower negative carbon isotopic composition ratio compared with the other grafting combinations in response to drought. The same 120 graft treatments also showed higher leaf ABA concentrations, lower levels of electrolyte leakage, and lower activities of ascorbate peroxidase and catalase under moderate (Ψpd = − 1.0 or − 1.5 MPa) and severe (Ψpd = − 3.0 MPa) drought. Root ABA concentrations were higher in plants with the 120 rootstocks regardless of watering regime. The 120 shoots could also contribute to drought tolerance because treatment with 120/109 rootstock/scion combination showed postponed dehydration, higher leaf ABA concentration, and lower leaf electrolyte leakage compared with the sensitive clone. We conclude that both the shoot and root systems of the tolerant clone can increase the concentrations of ABA in leaves in response to drought. This further suggests that ABA is associated with a delayed onset of severe water deficit and decreased oxidative damage in C. canephora.engPlant Growth Regulationv. 85, n. 2, p. 221– 229, jun. 2018Springer Nature Switzerland AG.info:eu-repo/semantics/openAccessABACoffeeOxidative stressPhotosynthesisWater deficitMass spectrometryReciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stressinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1537070https://locus.ufv.br//bitstream/123456789/22047/1/artigo.pdf8311fa19b477f7f070b67d75b6585d18MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22047/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4659https://locus.ufv.br//bitstream/123456789/22047/3/artigo.pdf.jpgd1b390b4ca4f40b4d27259a9e2f40786MD53123456789/220472018-09-26 23:00:57.667oai:locus.ufv.br:123456789/22047Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-27T02:00:57LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
title Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
spellingShingle Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
Silva, Vânia Aparecida
ABA
Coffee
Oxidative stress
Photosynthesis
Water deficit
Mass spectrometry
title_short Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
title_full Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
title_fullStr Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
title_full_unstemmed Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
title_sort Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress
author Silva, Vânia Aparecida
author_facet Silva, Vânia Aparecida
Prado, Fernanda Manso
Antunes, Werner Camargos
Paiva, Rita Márcia Cardoso
Ferrão, Maria Amélia Gava
Andrade, Alan Carvalho
Mascio, Paolo Di
Loureiro, Marcelo Ehlers
DaMatta, Fábio Murilo
Almeida, Andréa Miyasaka
author_role author
author2 Prado, Fernanda Manso
Antunes, Werner Camargos
Paiva, Rita Márcia Cardoso
Ferrão, Maria Amélia Gava
Andrade, Alan Carvalho
Mascio, Paolo Di
Loureiro, Marcelo Ehlers
DaMatta, Fábio Murilo
Almeida, Andréa Miyasaka
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Vânia Aparecida
Prado, Fernanda Manso
Antunes, Werner Camargos
Paiva, Rita Márcia Cardoso
Ferrão, Maria Amélia Gava
Andrade, Alan Carvalho
Mascio, Paolo Di
Loureiro, Marcelo Ehlers
DaMatta, Fábio Murilo
Almeida, Andréa Miyasaka
dc.subject.pt-BR.fl_str_mv ABA
Coffee
Oxidative stress
Photosynthesis
Water deficit
Mass spectrometry
topic ABA
Coffee
Oxidative stress
Photosynthesis
Water deficit
Mass spectrometry
description The role of abscisic acid (ABA) in drought tolerance of Coffea canephora is unknown. To determine whether ABA is associated with drought tolerance and if the use of tolerant rootstocks could increase ABA and drought tolerance, we performed reciprocal grafting experiments between clones with contrasting tolerance to drought (clone 109, sensitive; and clone 120, tolerant). Plants were grown in large (120 L) pots in a greenhouse and subjected to drought stress by withholding irrigation. The non-grafted 120 plants and graft treatments with 120 as a rootstock showed a slower reduction of predawn leaf water potential (Ψpd) and a lower negative carbon isotopic composition ratio compared with the other grafting combinations in response to drought. The same 120 graft treatments also showed higher leaf ABA concentrations, lower levels of electrolyte leakage, and lower activities of ascorbate peroxidase and catalase under moderate (Ψpd = − 1.0 or − 1.5 MPa) and severe (Ψpd = − 3.0 MPa) drought. Root ABA concentrations were higher in plants with the 120 rootstocks regardless of watering regime. The 120 shoots could also contribute to drought tolerance because treatment with 120/109 rootstock/scion combination showed postponed dehydration, higher leaf ABA concentration, and lower leaf electrolyte leakage compared with the sensitive clone. We conclude that both the shoot and root systems of the tolerant clone can increase the concentrations of ABA in leaves in response to drought. This further suggests that ABA is associated with a delayed onset of severe water deficit and decreased oxidative damage in C. canephora.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-09-27T01:13:15Z
dc.date.available.fl_str_mv 2018-09-27T01:13:15Z
dc.date.issued.fl_str_mv 2018-03-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10725-018-0385-5
http://www.locus.ufv.br/handle/123456789/22047
dc.identifier.issn.none.fl_str_mv 15735087
identifier_str_mv 15735087
url http://dx.doi.org/10.1007/s10725-018-0385-5
http://www.locus.ufv.br/handle/123456789/22047
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 85, n. 2, p. 221– 229, jun. 2018
dc.rights.driver.fl_str_mv Springer Nature Switzerland AG.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer Nature Switzerland AG.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Plant Growth Regulation
publisher.none.fl_str_mv Plant Growth Regulation
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22047/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22047/2/license.txt
https://locus.ufv.br//bitstream/123456789/22047/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 8311fa19b477f7f070b67d75b6585d18
8a4605be74aa9ea9d79846c1fba20a33
d1b390b4ca4f40b4d27259a9e2f40786
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212843564990464