Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | LOCUS Repositório Institucional da UFV |
Download full: | https://locus.ufv.br//handle/123456789/30677 https://doi.org/10.37496/rbz4920190039 |
Summary: | This study was conducted to evaluate the effect of rice byproducts on water quality, microbial community, and growth performance of L. vannamei juveniles. Shrimp of 0.98±0.10 g body weight (BW) were reared in 49 tanks of 1.5 m3 under 127 animals m−2 for 77 days. Rice bran, rice grits, and rice hulls were mixed into five different fertilizers varying their fiber content (90, 110, 150, 200, and 250 g kg−1) and compared against sugarcane molasses (MO) and unfertilized tanks (UNF). Rice byproducts and MO were applied in water three times a week at a fixed rate of 4.5 g m−3. Water salinity, pH, temperature, and dissolved oxygen reached 43±2 g L−1, 8.03±0.32, 30.2±0.90 °C, and 5.03±0.53 mg L−1, respectively. Settleable solids (SS) were higher in tanks fertilized with rice byproducts (from 2.5±1.0 to 3.1±1.1 mL L−1) and MO (3.4±1.0 mL L−1). Total ammonia nitrogen (0.19±0.09 mg L−1), nitrite (5.97±2.04 mg L−1), and nitrate (1.29±0.48 mg L−1) were kept low without any significant differences among treatments. The concentration of heterotrophic bacteria and fungi was significantly higher in rice byproducts compared with MO. Water fertilization had no effect on final shrimp survival (85.5±9.5%), weekly growth (0.72±0.11 g), and feed conversion ratio (1.59±0.10). Tanks treated with rice byproducts, except with 90 g kg−1 fiber, resulted in a higher final shrimp BW (from 9.04±1.56 to 9.52±1.89 g) compared with MO (8.75±2.14 g) and UNF (7.74±1.48 g). Gained yield and feed intake were significantly higher for tanks treated with rice byproducts than with UNF. A mix of rice byproducts can be equally or more effective as carbon sources to shrimp culture than MO |
id |
UFV_6110395430993641b40403f9b3887093 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/30677 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Leite, Jordana SampaioMelo, Caio Servulo BatistaNunes, Alberto Jorge Pinto2023-04-10T17:27:54Z2023-04-10T17:27:54Z2020-03-26Leite, J. S.; Melo, C. S. B. and Nunes, A. J. P. 2020. Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei. Revista Brasileira de Zootecnia 49:e201900391806-9290https://locus.ufv.br//handle/123456789/30677https://doi.org/10.37496/rbz4920190039This study was conducted to evaluate the effect of rice byproducts on water quality, microbial community, and growth performance of L. vannamei juveniles. Shrimp of 0.98±0.10 g body weight (BW) were reared in 49 tanks of 1.5 m3 under 127 animals m−2 for 77 days. Rice bran, rice grits, and rice hulls were mixed into five different fertilizers varying their fiber content (90, 110, 150, 200, and 250 g kg−1) and compared against sugarcane molasses (MO) and unfertilized tanks (UNF). Rice byproducts and MO were applied in water three times a week at a fixed rate of 4.5 g m−3. Water salinity, pH, temperature, and dissolved oxygen reached 43±2 g L−1, 8.03±0.32, 30.2±0.90 °C, and 5.03±0.53 mg L−1, respectively. Settleable solids (SS) were higher in tanks fertilized with rice byproducts (from 2.5±1.0 to 3.1±1.1 mL L−1) and MO (3.4±1.0 mL L−1). Total ammonia nitrogen (0.19±0.09 mg L−1), nitrite (5.97±2.04 mg L−1), and nitrate (1.29±0.48 mg L−1) were kept low without any significant differences among treatments. The concentration of heterotrophic bacteria and fungi was significantly higher in rice byproducts compared with MO. Water fertilization had no effect on final shrimp survival (85.5±9.5%), weekly growth (0.72±0.11 g), and feed conversion ratio (1.59±0.10). Tanks treated with rice byproducts, except with 90 g kg−1 fiber, resulted in a higher final shrimp BW (from 9.04±1.56 to 9.52±1.89 g) compared with MO (8.75±2.14 g) and UNF (7.74±1.48 g). Gained yield and feed intake were significantly higher for tanks treated with rice byproducts than with UNF. A mix of rice byproducts can be equally or more effective as carbon sources to shrimp culture than MOengBrazilian Journal of Animal ScienceR. Bras. Zootec., 49:e20190039, 2020Creative Commons Attribution Licenseinfo:eu-repo/semantics/openAccessmicrobial communityorganic fertilizationshrimp growth performanceUtilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannameiinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINAL1806-9290-rbz-49-e20190039.pdf1806-9290-rbz-49-e20190039.pdfartigoapplication/pdf494000https://locus.ufv.br//bitstream/123456789/30677/1/1806-9290-rbz-49-e20190039.pdfba4c00379cedcdc04c9e15de32bd078fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/30677/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/306772023-04-10 14:27:54.72oai:locus.ufv.br:123456789/30677Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452023-04-10T17:27:54LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
title |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
spellingShingle |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei Leite, Jordana Sampaio microbial community organic fertilization shrimp growth performance |
title_short |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
title_full |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
title_fullStr |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
title_full_unstemmed |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
title_sort |
Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei |
author |
Leite, Jordana Sampaio |
author_facet |
Leite, Jordana Sampaio Melo, Caio Servulo Batista Nunes, Alberto Jorge Pinto |
author_role |
author |
author2 |
Melo, Caio Servulo Batista Nunes, Alberto Jorge Pinto |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Leite, Jordana Sampaio Melo, Caio Servulo Batista Nunes, Alberto Jorge Pinto |
dc.subject.eng.fl_str_mv |
microbial community organic fertilization shrimp growth performance |
topic |
microbial community organic fertilization shrimp growth performance |
description |
This study was conducted to evaluate the effect of rice byproducts on water quality, microbial community, and growth performance of L. vannamei juveniles. Shrimp of 0.98±0.10 g body weight (BW) were reared in 49 tanks of 1.5 m3 under 127 animals m−2 for 77 days. Rice bran, rice grits, and rice hulls were mixed into five different fertilizers varying their fiber content (90, 110, 150, 200, and 250 g kg−1) and compared against sugarcane molasses (MO) and unfertilized tanks (UNF). Rice byproducts and MO were applied in water three times a week at a fixed rate of 4.5 g m−3. Water salinity, pH, temperature, and dissolved oxygen reached 43±2 g L−1, 8.03±0.32, 30.2±0.90 °C, and 5.03±0.53 mg L−1, respectively. Settleable solids (SS) were higher in tanks fertilized with rice byproducts (from 2.5±1.0 to 3.1±1.1 mL L−1) and MO (3.4±1.0 mL L−1). Total ammonia nitrogen (0.19±0.09 mg L−1), nitrite (5.97±2.04 mg L−1), and nitrate (1.29±0.48 mg L−1) were kept low without any significant differences among treatments. The concentration of heterotrophic bacteria and fungi was significantly higher in rice byproducts compared with MO. Water fertilization had no effect on final shrimp survival (85.5±9.5%), weekly growth (0.72±0.11 g), and feed conversion ratio (1.59±0.10). Tanks treated with rice byproducts, except with 90 g kg−1 fiber, resulted in a higher final shrimp BW (from 9.04±1.56 to 9.52±1.89 g) compared with MO (8.75±2.14 g) and UNF (7.74±1.48 g). Gained yield and feed intake were significantly higher for tanks treated with rice byproducts than with UNF. A mix of rice byproducts can be equally or more effective as carbon sources to shrimp culture than MO |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-03-26 |
dc.date.accessioned.fl_str_mv |
2023-04-10T17:27:54Z |
dc.date.available.fl_str_mv |
2023-04-10T17:27:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Leite, J. S.; Melo, C. S. B. and Nunes, A. J. P. 2020. Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei. Revista Brasileira de Zootecnia 49:e20190039 |
dc.identifier.uri.fl_str_mv |
https://locus.ufv.br//handle/123456789/30677 |
dc.identifier.issn.none.fl_str_mv |
1806-9290 |
dc.identifier.doi.pt-BR.fl_str_mv |
https://doi.org/10.37496/rbz4920190039 |
identifier_str_mv |
Leite, J. S.; Melo, C. S. B. and Nunes, A. J. P. 2020. Utilization of rice byproducts as carbon sources in high-density culture of the Pacific white shrimp, Litopenaeus vannamei. Revista Brasileira de Zootecnia 49:e20190039 1806-9290 |
url |
https://locus.ufv.br//handle/123456789/30677 https://doi.org/10.37496/rbz4920190039 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
R. Bras. Zootec., 49:e20190039, 2020 |
dc.rights.driver.fl_str_mv |
Creative Commons Attribution License info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Creative Commons Attribution License |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Brazilian Journal of Animal Science |
publisher.none.fl_str_mv |
Brazilian Journal of Animal Science |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/30677/1/1806-9290-rbz-49-e20190039.pdf https://locus.ufv.br//bitstream/123456789/30677/2/license.txt |
bitstream.checksum.fl_str_mv |
ba4c00379cedcdc04c9e15de32bd078f 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213057735589888 |