Digestão anaeróbia de um polímero à base de fécula de mandioca

Detalhes bibliográficos
Autor(a) principal: Cremonez, Paulo André
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/4273
Resumo: ABSTRACT: Researchers have focused on biodegradable plastics production to reduce environmental impacts due to the increasing development of the food industry and packaging residues production. Despite the great advantage on using these biodegradable compounds, few researches aim at determining the degradation of these materials under different releasing conditions based on organic waste treatment processes. Thus, this trial was divided into 3 chapters, and aimed at testing anaerobic biodigestion process of biodegradable polymers based on manioc starch to determine its potential for degradation and biogas production, by varying organic loads that are under this process. In Chapter 1, a review concerning the state of art was developed, whose main topics are related to the process of digestion and biopolymers. In Chapter 2, the reasons of inoculum/substrate 0,04, 0,08, 0,2, 0,6 e 1 (gVS/gVS) were tested, using batch reactors (3.2 liters of usable volume), under 37 °C, with 3 replications. In addition, there were 5 destructive samples for each treatment. It was defined that HRT was of 32 days. The results obtained by the regression curves showed that the smaller inoculum/substrate ratio is the best to remove organic matter (above 90%) and biogas production (1027 mL biogas/gVSadd). Besides, some predominance of acidogenic phase with high hydrogen production was observed in the beginning of digestion, while bacteria producers of methane prevailed after the 13th digestion day. Thus, in Chapter 3, the goal was to carry out the anaerobic digestion process and separate acidogenic and methanogenic phases physically. A 3.8-liter useful volume reactor was used with a stirring system coupled to the acidogenic phase, and a 10-liter reactor with a useful volume for methanogenic phase, both operated in a mesophilic temperature range. The Acidogenic reactor was submitted to polymer loads of 8 g/L, 10 g/L, 12 g/L e 14 g/L (humid base), and its effluent was taken to the Methanogenic reactor. The HRTs were defined in 5 and 20 days for the acidogenic and methanogenic reactors, respectively. Based on the obtained results, it was observed that one of the best results was registered with a 10-g/L concentration to produce hydrogen (19.93 mL/gVSadd) and methane (249.13 mL/gVSadd), in the respective phases. This treatment also showed the highest concentrations of gases in biogas (43.17% for hydrogen in Phase 1 and 76.62% for methane in Phase 2), and 84.04% of solids removal at the end of the methanogenic phase. So, it can be concluded that the studied polymer has a high potential for degradation by anaerobic digestion route, which produced biogas with high energy power, rich in methane and hydrogen. Despite this, even considering the separation of acid and methanogenic phases, very high loads of polymer can cause disturbances and collapse in digestion system by the high production of volatile acids.
id UNIOESTE-1_66f4e0692b17227eec21ca6c685ea04f
oai_identifier_str oai:tede.unioeste.br:tede/4273
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Sampaio, Silvio Cesarhttp://lattes.cnpq.br/9197019775809808Teleken , Joel Gustavohttp://lattes.cnpq.br/6288735286919040Margarido , Vladimir Pavanhttp://lattes.cnpq.br/5121185222918238Alves , Helton Joséhttp://lattes.cnpq.br/5897443860808783Remor , Marcelo Bevilacquahttp://lattes.cnpq.br/9666916584924560Simão , Rita de Cássia Garciahttp://lattes.cnpq.br/7967975885148688http://lattes.cnpq.br/8113794468270141Cremonez, Paulo André2019-05-17T19:33:26Z2019-02-13CREMONEZ, Paulo André. Digestão anaeróbia de um polímero à base de fécula de mandioca. 2019. 122 f. Tese( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2019.http://tede.unioeste.br/handle/tede/4273ABSTRACT: Researchers have focused on biodegradable plastics production to reduce environmental impacts due to the increasing development of the food industry and packaging residues production. Despite the great advantage on using these biodegradable compounds, few researches aim at determining the degradation of these materials under different releasing conditions based on organic waste treatment processes. Thus, this trial was divided into 3 chapters, and aimed at testing anaerobic biodigestion process of biodegradable polymers based on manioc starch to determine its potential for degradation and biogas production, by varying organic loads that are under this process. In Chapter 1, a review concerning the state of art was developed, whose main topics are related to the process of digestion and biopolymers. In Chapter 2, the reasons of inoculum/substrate 0,04, 0,08, 0,2, 0,6 e 1 (gVS/gVS) were tested, using batch reactors (3.2 liters of usable volume), under 37 °C, with 3 replications. In addition, there were 5 destructive samples for each treatment. It was defined that HRT was of 32 days. The results obtained by the regression curves showed that the smaller inoculum/substrate ratio is the best to remove organic matter (above 90%) and biogas production (1027 mL biogas/gVSadd). Besides, some predominance of acidogenic phase with high hydrogen production was observed in the beginning of digestion, while bacteria producers of methane prevailed after the 13th digestion day. Thus, in Chapter 3, the goal was to carry out the anaerobic digestion process and separate acidogenic and methanogenic phases physically. A 3.8-liter useful volume reactor was used with a stirring system coupled to the acidogenic phase, and a 10-liter reactor with a useful volume for methanogenic phase, both operated in a mesophilic temperature range. The Acidogenic reactor was submitted to polymer loads of 8 g/L, 10 g/L, 12 g/L e 14 g/L (humid base), and its effluent was taken to the Methanogenic reactor. The HRTs were defined in 5 and 20 days for the acidogenic and methanogenic reactors, respectively. Based on the obtained results, it was observed that one of the best results was registered with a 10-g/L concentration to produce hydrogen (19.93 mL/gVSadd) and methane (249.13 mL/gVSadd), in the respective phases. This treatment also showed the highest concentrations of gases in biogas (43.17% for hydrogen in Phase 1 and 76.62% for methane in Phase 2), and 84.04% of solids removal at the end of the methanogenic phase. So, it can be concluded that the studied polymer has a high potential for degradation by anaerobic digestion route, which produced biogas with high energy power, rich in methane and hydrogen. Despite this, even considering the separation of acid and methanogenic phases, very high loads of polymer can cause disturbances and collapse in digestion system by the high production of volatile acids.RESUMO: Devido ao crescente desenvolvimento da indústria de alimentos e à grande produção de resíduos de embalagens, pesquisadores têm focado na produção de plásticos biodegradáveis que visem reduzir os impactos ambientais. Apesar da grande vantagem na utilização destes compostos biodegradáveis, poucas são as pesquisas que objetivam determinar a degradação destes materiais em diferentes condições de disposição e através de processos de tratamento de resíduos orgânicos. Assim, o presente trabalho, dividido em 3 capítulos, teve como objetivo testar o processo de biodigestão anaeróbia de polímeros biodegradáveis à base de fécula de mandioca, a fim de determinar seu potencial de degradação e produção de biogás, pela variação das cargas orgânicas submetidas ao processo. No Capítulo 1, desenvolveu-se uma revisão do estado da arte sobre os principais tópicos que se relacionam ao processo de digestão e biopolímeros. No Capítulo 2, testaram-se as razões inóculo/substrato de 0,04, 0,08, 0,2, 0,6 e 1 (gSV/gSV), em reatores em regime batelada (3,2 litros de volume útil), submetidos à temperatura de 37 °C, com três repetições, além de cinco amostras destrutivas para cada um dos tratamentos. Definiu-se o TRH de 32 dias. Os resultados obtidos a partir das curvas de regressão mostraram que quanto menor for a razão inóculo/substrato, maiores serão as remoções de matéria orgânica (superior a 90%) e produção de biogás (1027 mL biogás/gSV adicionado). Além disso, o início da digestão foi marcado por predomínio de fase acidogênica com elevada produção de hidrogênio. Porém, após o 13º dia de digestão ocorreu predomínio de bactérias produtoras de metano. Deste modo, no Capítulo 3, objetivou-se a realização do processo de digestão anaeróbia com fases acidogênica e metanogênica, separadas fisicamente. Utilizou-se um reator de volume útil de 3,8 litros com sistema de agitação acoplado para fase acidogênica, e um reator de 10 litros de volume útil para fase metanogênica, ambos foram operados em faixa mesofílica de temperatura. O reator acidogênico foi submetido a cargas de polímeros de 8 g/L, 10 g/L, 12 g/L e 14 g/L (base úmida), e seu efluente foi encaminhado ao reator metanogênico. Os TRHs foram definidos em 5 e 20 dias para os reatores acidogênico e metanogênico, respectivamente. Com base nos resultados obtidos, constatou-se que a concentração de 10 g/L foi a que apresentou os melhores resultados para produção de hidrogênio (19,93 mL/gSVadic) e metano (249,13 mL/gSVadic), nas respectivas fases. Esse tratamento também apresentou os maiores teores dos gases presentes no biogás (43,17% para hidrogênio na fase 1 e 76,62% para metano na fase 2), além de 84,04% de remoção de sólidos ao final da fase metanogênica. Com isso, pode-se concluir que o polímero estudado apresenta elevado potencial de degradação por rota de biodigestão, o qual produziu biogás com elevado poder energético, rico em metano e hidrogênio. Apesar disso, mesmo considerando-se a separação de fases acidogênica e metanogênica, cargas muito elevadas do polímero podem causar perturbações e colapso no sistema de digestão pela elevada produção de ácidos voláteis.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2019-05-17T19:33:26Z No. of bitstreams: 2 PAULO_CREMONEZ_2019.pdf: 2890893 bytes, checksum: ffc0537f6e4b0d446030668a0fda324c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-05-17T19:33:26Z (GMT). No. of bitstreams: 2 PAULO_CREMONEZ_2019.pdf: 2890893 bytes, checksum: ffc0537f6e4b0d446030668a0fda324c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-02-13Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessEnergias renováveisHidrogênioMetanoPolímeros biodegradáveisBiodegradable polymersHydrogenMethaneRenewable energiesCIENCIAS AGRARIAS::ENGENHARIA AGRICOLADigestão anaeróbia de um polímero à base de fécula de mandiocaAnaerobic digestion of a polymer based on cassava starchinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALPAULO_CREMONEZ_2019.pdfPAULO_CREMONEZ_2019.pdfapplication/pdf2890893http://tede.unioeste.br:8080/tede/bitstream/tede/4273/5/PAULO_CREMONEZ_2019.pdfffc0537f6e4b0d446030668a0fda324cMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/4273/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4273/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4273/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/4273/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/42732019-05-17 16:33:26.055oai:tede.unioeste.br:tede/4273Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2019-05-17T19:33:26Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Digestão anaeróbia de um polímero à base de fécula de mandioca
dc.title.alternative.eng.fl_str_mv Anaerobic digestion of a polymer based on cassava starch
title Digestão anaeróbia de um polímero à base de fécula de mandioca
spellingShingle Digestão anaeróbia de um polímero à base de fécula de mandioca
Cremonez, Paulo André
Energias renováveis
Hidrogênio
Metano
Polímeros biodegradáveis
Biodegradable polymers
Hydrogen
Methane
Renewable energies
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Digestão anaeróbia de um polímero à base de fécula de mandioca
title_full Digestão anaeróbia de um polímero à base de fécula de mandioca
title_fullStr Digestão anaeróbia de um polímero à base de fécula de mandioca
title_full_unstemmed Digestão anaeróbia de um polímero à base de fécula de mandioca
title_sort Digestão anaeróbia de um polímero à base de fécula de mandioca
author Cremonez, Paulo André
author_facet Cremonez, Paulo André
author_role author
dc.contributor.advisor1.fl_str_mv Sampaio, Silvio Cesar
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9197019775809808
dc.contributor.advisor-co1.fl_str_mv Teleken , Joel Gustavo
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6288735286919040
dc.contributor.referee1.fl_str_mv Margarido , Vladimir Pavan
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5121185222918238
dc.contributor.referee2.fl_str_mv Alves , Helton José
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5897443860808783
dc.contributor.referee3.fl_str_mv Remor , Marcelo Bevilacqua
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/9666916584924560
dc.contributor.referee4.fl_str_mv Simão , Rita de Cássia Garcia
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/7967975885148688
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8113794468270141
dc.contributor.author.fl_str_mv Cremonez, Paulo André
contributor_str_mv Sampaio, Silvio Cesar
Teleken , Joel Gustavo
Margarido , Vladimir Pavan
Alves , Helton José
Remor , Marcelo Bevilacqua
Simão , Rita de Cássia Garcia
dc.subject.por.fl_str_mv Energias renováveis
Hidrogênio
Metano
Polímeros biodegradáveis
topic Energias renováveis
Hidrogênio
Metano
Polímeros biodegradáveis
Biodegradable polymers
Hydrogen
Methane
Renewable energies
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Biodegradable polymers
Hydrogen
Methane
Renewable energies
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description ABSTRACT: Researchers have focused on biodegradable plastics production to reduce environmental impacts due to the increasing development of the food industry and packaging residues production. Despite the great advantage on using these biodegradable compounds, few researches aim at determining the degradation of these materials under different releasing conditions based on organic waste treatment processes. Thus, this trial was divided into 3 chapters, and aimed at testing anaerobic biodigestion process of biodegradable polymers based on manioc starch to determine its potential for degradation and biogas production, by varying organic loads that are under this process. In Chapter 1, a review concerning the state of art was developed, whose main topics are related to the process of digestion and biopolymers. In Chapter 2, the reasons of inoculum/substrate 0,04, 0,08, 0,2, 0,6 e 1 (gVS/gVS) were tested, using batch reactors (3.2 liters of usable volume), under 37 °C, with 3 replications. In addition, there were 5 destructive samples for each treatment. It was defined that HRT was of 32 days. The results obtained by the regression curves showed that the smaller inoculum/substrate ratio is the best to remove organic matter (above 90%) and biogas production (1027 mL biogas/gVSadd). Besides, some predominance of acidogenic phase with high hydrogen production was observed in the beginning of digestion, while bacteria producers of methane prevailed after the 13th digestion day. Thus, in Chapter 3, the goal was to carry out the anaerobic digestion process and separate acidogenic and methanogenic phases physically. A 3.8-liter useful volume reactor was used with a stirring system coupled to the acidogenic phase, and a 10-liter reactor with a useful volume for methanogenic phase, both operated in a mesophilic temperature range. The Acidogenic reactor was submitted to polymer loads of 8 g/L, 10 g/L, 12 g/L e 14 g/L (humid base), and its effluent was taken to the Methanogenic reactor. The HRTs were defined in 5 and 20 days for the acidogenic and methanogenic reactors, respectively. Based on the obtained results, it was observed that one of the best results was registered with a 10-g/L concentration to produce hydrogen (19.93 mL/gVSadd) and methane (249.13 mL/gVSadd), in the respective phases. This treatment also showed the highest concentrations of gases in biogas (43.17% for hydrogen in Phase 1 and 76.62% for methane in Phase 2), and 84.04% of solids removal at the end of the methanogenic phase. So, it can be concluded that the studied polymer has a high potential for degradation by anaerobic digestion route, which produced biogas with high energy power, rich in methane and hydrogen. Despite this, even considering the separation of acid and methanogenic phases, very high loads of polymer can cause disturbances and collapse in digestion system by the high production of volatile acids.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-17T19:33:26Z
dc.date.issued.fl_str_mv 2019-02-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CREMONEZ, Paulo André. Digestão anaeróbia de um polímero à base de fécula de mandioca. 2019. 122 f. Tese( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2019.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/4273
identifier_str_mv CREMONEZ, Paulo André. Digestão anaeróbia de um polímero à base de fécula de mandioca. 2019. 122 f. Tese( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2019.
url http://tede.unioeste.br/handle/tede/4273
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/4273/5/PAULO_CREMONEZ_2019.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/4273/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/4273/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/4273/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/4273/1/license.txt
bitstream.checksum.fl_str_mv ffc0537f6e4b0d446030668a0fda324c
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1798039766086713344