Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | |
Format: | Article |
Language: | por |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.17224/EnergAgric.2011v26n2p01-19 http://hdl.handle.net/11449/137440 |
Summary: | Crop yield is influenced by several factors with variability in time and space that are associated with the variations in the plant vigor. This variability allows the identification of management zones and site-specific applications to manage different regions of the field. The purpose of this study was the use of multispectral image for management zones identification and implications of site-specific application in commercial cotton areas. Multispectral airborne images from three years were used to classify a field into three vegetation classes via the Normalized Difference Vegetation Index (NDVI). The NDVI classes were used to verify the potential differences between plant physical measurements and identify management zones. The cotton plant measurements sampled in 8 repetitions of 10 plants at each NDVI class were Stand Count, Plant Height, Total Nodes and Total Bolls. Statistical analysis was performed with treatments arranged in split plot design with Tukey’s Test at 5% of probability. The images were classified into five NDVI classes to evaluate the relationship between cotton plant measurement results and sampling location across the field. The results have demonstrated the possibility of using multispectral image for management zones identification in cotton areas. The image classification into three NDVI classes showed three different zones in the field with similar characteristics for the studied years. Statistical differences were shown for plant height, total nodes and total bolls between low and high NDVI classes for all years. High NDVI classes contained plants with greater height, total nodes and total bolls compared to low NDVI classes. There was no difference in Stand Count between low and high NDVI classes for the three studied years. The final plant stand was the same between all NDVI classes for 2001 and 2003 as it was expected due to the conventional seeding application with the same rate of seeds for the entire field. |
id |
UNSP_00fbad0c93922fc1489cfa71543d04fa |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/137440 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumosMultispectral image for management zones identification and variable rate application in cotton areasPrecision agricultureSite-specific applicationVariable rateRemote sensingPlant mappingAgricultura de PrecisãoAplicacao localizadasensoresSistema de suporte a decisãoCrop yield is influenced by several factors with variability in time and space that are associated with the variations in the plant vigor. This variability allows the identification of management zones and site-specific applications to manage different regions of the field. The purpose of this study was the use of multispectral image for management zones identification and implications of site-specific application in commercial cotton areas. Multispectral airborne images from three years were used to classify a field into three vegetation classes via the Normalized Difference Vegetation Index (NDVI). The NDVI classes were used to verify the potential differences between plant physical measurements and identify management zones. The cotton plant measurements sampled in 8 repetitions of 10 plants at each NDVI class were Stand Count, Plant Height, Total Nodes and Total Bolls. Statistical analysis was performed with treatments arranged in split plot design with Tukey’s Test at 5% of probability. The images were classified into five NDVI classes to evaluate the relationship between cotton plant measurement results and sampling location across the field. The results have demonstrated the possibility of using multispectral image for management zones identification in cotton areas. The image classification into three NDVI classes showed three different zones in the field with similar characteristics for the studied years. Statistical differences were shown for plant height, total nodes and total bolls between low and high NDVI classes for all years. High NDVI classes contained plants with greater height, total nodes and total bolls compared to low NDVI classes. There was no difference in Stand Count between low and high NDVI classes for the three studied years. The final plant stand was the same between all NDVI classes for 2001 and 2003 as it was expected due to the conventional seeding application with the same rate of seeds for the entire field.Os fatores que afetam a produtividade das culturas apresentam variabilidade espacial e temporal nas áreas de produção e estão associados a variações no vigor das plantas. Esta variabilidade permite a identificação de zonas de manejo e tratamento localizado de diferentes regiões dentro do campo. A finalidade deste estudo foi o uso de imagens aéreas multiespectrais na identificação de zonas de manejo e sua implicação na aplicação localizada de insumos em área de produção comercial de algodão. Para tal, imagens aéreas multiespectrais de três anos foram usadas para a geração das classes de vegetação, pelo índice de vegetação com diferença normalizada (NDVI), que dividiram a área em três regiões. Nestas regiões foram amostrados os atributos físicos das plantas de algodão para verificar a existência de diferenças entre as plantas encontradas em cada região e com isso identificar zonas de manejo. Os atributos físicos das plantas de algodão (estande, altura, número total de nós e número total de maçãs por planta) foram amostrados em 8 repetições com 10 plantas por classe de NDVI. A avaliação estatística dos atributos amostrados foi realizada pelo delineamento em parcelas subdivididas com teste de Tukey a 5% de probabilidade. As classes de NDVI dos vários anos foram sobrepostas para avaliação das áreas de estabilidade e de transição das imagens e verificar a estabilidade das zonas de manejo no tempo e no espaço. A avaliação da implicação do uso das zonas de manejo na aplicação localizada de insumos foi realizada pelo cálculo da porcentagem de acerto e erro entre a localização das classes de NDVI utilizadas como zonas de manejo em um ano para a aplicação localizada de insumos. Em outro, pelas seis combinações existentes entre os anos de 2001, 2002 e 2003. Os resultados demonstraram a possibilidade de se identificar zonas de manejo para a cultura do algodão com a utilização de imagens aéreas multiespectrais. A classificação das imagens multiespectrais pelo índice de vegetação com diferenças normalizadas (NDVI) permitiu a divisão da área em três classes com características semelhantes em todos os anos. Houveram diferenças estatísticas para todos os anos entre as classes de baixo e alto NDVI, sendo que as plantas das classes de alto NDVI apresentaram maior altura, maior número total de nós e maior número total de maçãs, que as plantas encontradas na classe de baixo NDVI. Não houve diferença no estande das plantas entre as classes de baixo e alto NDVI para os três anos, e todas as classes tiveram o mesmo estande de plantas nos anos de 2001 e 2003, conforme o esperado pela semeadura com distribuição uniforme de sementes.Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas de Botucatu, Botucatu, Rua José Barbosa de Barros, 1780, Lageado, CEP 18610307, SP, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas de Botucatu, Botucatu, Rua José Barbosa de Barros, 1780, Lageado, CEP 18610307, SP, BrasilUniversidade Estadual Paulista (Unesp)Salvador, André [UNESP]Antuniassi, Ulisses Rocha [UNESP]2016-04-01T18:45:40Z2016-04-01T18:45:40Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-19application/pdfhttp://dx.doi.org/10.17224/EnergAgric.2011v26n2p01-19Energia na Agricultura, v. 26, n. 2, p. 1-19, 2011.1808-8759http://hdl.handle.net/11449/13744010.17224/EnergAgric.2011v26n2p01-19ISSN1808-8759-2011-26-02-01-19.pdf9,7548510295485E+015Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporEnergia na Agriculturainfo:eu-repo/semantics/openAccess2024-04-30T14:01:51Zoai:repositorio.unesp.br:11449/137440Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:38:45.726761Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos Multispectral image for management zones identification and variable rate application in cotton areas |
title |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos |
spellingShingle |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos Salvador, André [UNESP] Precision agriculture Site-specific application Variable rate Remote sensing Plant mapping Agricultura de Precisão Aplicacao localizada sensores Sistema de suporte a decisão |
title_short |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos |
title_full |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos |
title_fullStr |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos |
title_full_unstemmed |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos |
title_sort |
Imagens aéreas multiespectrais na identificação de zonas de manejo em áreas de algodão para aplicação localizada de insumos |
author |
Salvador, André [UNESP] |
author_facet |
Salvador, André [UNESP] Antuniassi, Ulisses Rocha [UNESP] |
author_role |
author |
author2 |
Antuniassi, Ulisses Rocha [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Salvador, André [UNESP] Antuniassi, Ulisses Rocha [UNESP] |
dc.subject.por.fl_str_mv |
Precision agriculture Site-specific application Variable rate Remote sensing Plant mapping Agricultura de Precisão Aplicacao localizada sensores Sistema de suporte a decisão |
topic |
Precision agriculture Site-specific application Variable rate Remote sensing Plant mapping Agricultura de Precisão Aplicacao localizada sensores Sistema de suporte a decisão |
description |
Crop yield is influenced by several factors with variability in time and space that are associated with the variations in the plant vigor. This variability allows the identification of management zones and site-specific applications to manage different regions of the field. The purpose of this study was the use of multispectral image for management zones identification and implications of site-specific application in commercial cotton areas. Multispectral airborne images from three years were used to classify a field into three vegetation classes via the Normalized Difference Vegetation Index (NDVI). The NDVI classes were used to verify the potential differences between plant physical measurements and identify management zones. The cotton plant measurements sampled in 8 repetitions of 10 plants at each NDVI class were Stand Count, Plant Height, Total Nodes and Total Bolls. Statistical analysis was performed with treatments arranged in split plot design with Tukey’s Test at 5% of probability. The images were classified into five NDVI classes to evaluate the relationship between cotton plant measurement results and sampling location across the field. The results have demonstrated the possibility of using multispectral image for management zones identification in cotton areas. The image classification into three NDVI classes showed three different zones in the field with similar characteristics for the studied years. Statistical differences were shown for plant height, total nodes and total bolls between low and high NDVI classes for all years. High NDVI classes contained plants with greater height, total nodes and total bolls compared to low NDVI classes. There was no difference in Stand Count between low and high NDVI classes for the three studied years. The final plant stand was the same between all NDVI classes for 2001 and 2003 as it was expected due to the conventional seeding application with the same rate of seeds for the entire field. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2016-04-01T18:45:40Z 2016-04-01T18:45:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.17224/EnergAgric.2011v26n2p01-19 Energia na Agricultura, v. 26, n. 2, p. 1-19, 2011. 1808-8759 http://hdl.handle.net/11449/137440 10.17224/EnergAgric.2011v26n2p01-19 ISSN1808-8759-2011-26-02-01-19.pdf 9,7548510295485E+015 |
url |
http://dx.doi.org/10.17224/EnergAgric.2011v26n2p01-19 http://hdl.handle.net/11449/137440 |
identifier_str_mv |
Energia na Agricultura, v. 26, n. 2, p. 1-19, 2011. 1808-8759 10.17224/EnergAgric.2011v26n2p01-19 ISSN1808-8759-2011-26-02-01-19.pdf 9,7548510295485E+015 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Energia na Agricultura |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-19 application/pdf |
dc.source.none.fl_str_mv |
Currículo Lattes reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129100321128448 |