Constraints on the functional trait space of aquatic invertebrates in bromeliads

Detalhes bibliográficos
Autor(a) principal: Céréghino, Régis
Data de Publicação: 2018
Outros Autores: Pillar, Valério D., Srivastava, Diane S., de Omena, Paula M., MacDonald, A. Andrew M., Barberis, Ignacio M., Corbara, Bruno, Guzman, Laura M., Leroy, Céline, Ospina Bautista, Fabiola, Romero, Gustavo Q., Trzcinski, M. Kurtis, Kratina, Pavel, Debastiani, Vanderlei J., Gonçalves, Ana Z., Marino, Nicholas A. C., Farjalla, Vinicius F., Richardson, Barbara A., Richardson, Michael J., Dézerald, Olivier, Gilbert, Benjamin, Petermann, Jana, Talaga, Stanislas, Piccoli, Gustavo C. O., Jocqué, Merlijn, Montero, Guillermo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1111/1365-2435.13141
http://hdl.handle.net/11449/221175
Resumo: Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article.
id UNSP_40af66140316f75eda319e2afbca28c8
oai_identifier_str oai:repositorio.unesp.br:11449/221175
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Constraints on the functional trait space of aquatic invertebrates in bromeliadsaquatic invertebratesecological strategiesfunctional diversityfunctional trait spaceniche hypervolumeFunctional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article.Carnegie Trust for the Universities of ScotlandU.S. Department of AgricultureConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)LabexNational Science FoundationRoyal Society of EdinburghECOLAB CNRS Université de ToulouseDepartment of Ecology and Graduate Program in Ecology Universidade Federal do Rio Grande do SulDepartment of Zoology & Biodiversity Research Centre University of British ColumbiaLaboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of CampinasCentre for the Synthesis and Analysis of Biodiversity (CESAB-FRB)Facultad de Ciencias Agrarias Instituto de Investigaciones en Ciencias Agrarias Universidad Nacional de RosarioLaboratoire Microorganismes Génome et Environnement Université Clermont AuvergneAMAP IRD CIRAD CNRS INRA Université de MontpellierECOFOG Campus AgronomiqueDepartment of Biological Sciences Andes UniversityDepartment of Forest and Conservation Sciences University of British ColumbiaSchool of Biological and Chemical Sciences Queen Mary University of LondonDepartment of Botany Biosciences Institute University of São PauloDepartamento de Ecologia Instituto de Biologia Universidade Federal do Rio de JaneiroPrograma de Pós-Graduação em Ecologia Universidade Federal do Rio de JaneiroLuquillo LTER Institute for Tropical Ecosystem Studies University of Puerto RicoLaboratoire Interdisciplinaire des Environnements Continentaux CNRS Université de LorraineDepartment of Ecology and Evolutionary Biology University of TorontoBerlin-Brandenburg Institute of Advanced Biodiversity ResearchDepartment of Biosciences University of SalzburgInstitut Pasteur de la Guyane Unité d'Entomologie MédicaleDepartment of Zoology and Botany University of São Paulo StateAquatic and Terrestrial Ecology Royal Belgian Institute of Natural SciencesFacultad de Ciencias Agrarias Universidad Nacional de RosarioU.S. Department of Agriculture: 01-1G11120101-001CNPq: 307689/2014-0CNPq: 401345/2014-9Labex: ANR-10-LABX-25-01National Science Foundation: DEB-0218039National Science Foundation: DEB-0620910Université de ToulouseUniversidade Federal do Rio Grande do SulUniversity of British ColumbiaUniversidade Estadual de Campinas (UNICAMP)Centre for the Synthesis and Analysis of Biodiversity (CESAB-FRB)Universidad Nacional de RosarioUniversité Clermont AuvergneUniversité de MontpellierECOFOGAndes UniversityQueen Mary University of LondonUniversidade de São Paulo (USP)Universidade Federal do Rio de Janeiro (UFRJ)University of Puerto RicoUniversité de LorraineUniversity of TorontoBerlin-Brandenburg Institute of Advanced Biodiversity ResearchUniversity of SalzburgUnité d'Entomologie MédicaleRoyal Belgian Institute of Natural SciencesCéréghino, RégisPillar, Valério D.Srivastava, Diane S.de Omena, Paula M.MacDonald, A. Andrew M.Barberis, Ignacio M.Corbara, BrunoGuzman, Laura M.Leroy, CélineOspina Bautista, FabiolaRomero, Gustavo Q.Trzcinski, M. KurtisKratina, PavelDebastiani, Vanderlei J.Gonçalves, Ana Z.Marino, Nicholas A. C.Farjalla, Vinicius F.Richardson, Barbara A.Richardson, Michael J.Dézerald, OlivierGilbert, BenjaminPetermann, JanaTalaga, StanislasPiccoli, Gustavo C. O.Jocqué, MerlijnMontero, Guillermo2022-04-28T19:26:17Z2022-04-28T19:26:17Z2018-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2435-2447http://dx.doi.org/10.1111/1365-2435.13141Functional Ecology, v. 32, n. 10, p. 2435-2447, 2018.1365-24350269-8463http://hdl.handle.net/11449/22117510.1111/1365-2435.131412-s2.0-85054310408Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFunctional Ecologyinfo:eu-repo/semantics/openAccess2022-04-28T19:26:17Zoai:repositorio.unesp.br:11449/221175Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-04-28T19:26:17Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Constraints on the functional trait space of aquatic invertebrates in bromeliads
title Constraints on the functional trait space of aquatic invertebrates in bromeliads
spellingShingle Constraints on the functional trait space of aquatic invertebrates in bromeliads
Céréghino, Régis
aquatic invertebrates
ecological strategies
functional diversity
functional trait space
niche hypervolume
title_short Constraints on the functional trait space of aquatic invertebrates in bromeliads
title_full Constraints on the functional trait space of aquatic invertebrates in bromeliads
title_fullStr Constraints on the functional trait space of aquatic invertebrates in bromeliads
title_full_unstemmed Constraints on the functional trait space of aquatic invertebrates in bromeliads
title_sort Constraints on the functional trait space of aquatic invertebrates in bromeliads
author Céréghino, Régis
author_facet Céréghino, Régis
Pillar, Valério D.
Srivastava, Diane S.
de Omena, Paula M.
MacDonald, A. Andrew M.
Barberis, Ignacio M.
Corbara, Bruno
Guzman, Laura M.
Leroy, Céline
Ospina Bautista, Fabiola
Romero, Gustavo Q.
Trzcinski, M. Kurtis
Kratina, Pavel
Debastiani, Vanderlei J.
Gonçalves, Ana Z.
Marino, Nicholas A. C.
Farjalla, Vinicius F.
Richardson, Barbara A.
Richardson, Michael J.
Dézerald, Olivier
Gilbert, Benjamin
Petermann, Jana
Talaga, Stanislas
Piccoli, Gustavo C. O.
Jocqué, Merlijn
Montero, Guillermo
author_role author
author2 Pillar, Valério D.
Srivastava, Diane S.
de Omena, Paula M.
MacDonald, A. Andrew M.
Barberis, Ignacio M.
Corbara, Bruno
Guzman, Laura M.
Leroy, Céline
Ospina Bautista, Fabiola
Romero, Gustavo Q.
Trzcinski, M. Kurtis
Kratina, Pavel
Debastiani, Vanderlei J.
Gonçalves, Ana Z.
Marino, Nicholas A. C.
Farjalla, Vinicius F.
Richardson, Barbara A.
Richardson, Michael J.
Dézerald, Olivier
Gilbert, Benjamin
Petermann, Jana
Talaga, Stanislas
Piccoli, Gustavo C. O.
Jocqué, Merlijn
Montero, Guillermo
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Université de Toulouse
Universidade Federal do Rio Grande do Sul
University of British Columbia
Universidade Estadual de Campinas (UNICAMP)
Centre for the Synthesis and Analysis of Biodiversity (CESAB-FRB)
Universidad Nacional de Rosario
Université Clermont Auvergne
Université de Montpellier
ECOFOG
Andes University
Queen Mary University of London
Universidade de São Paulo (USP)
Universidade Federal do Rio de Janeiro (UFRJ)
University of Puerto Rico
Université de Lorraine
University of Toronto
Berlin-Brandenburg Institute of Advanced Biodiversity Research
University of Salzburg
Unité d'Entomologie Médicale
Royal Belgian Institute of Natural Sciences
dc.contributor.author.fl_str_mv Céréghino, Régis
Pillar, Valério D.
Srivastava, Diane S.
de Omena, Paula M.
MacDonald, A. Andrew M.
Barberis, Ignacio M.
Corbara, Bruno
Guzman, Laura M.
Leroy, Céline
Ospina Bautista, Fabiola
Romero, Gustavo Q.
Trzcinski, M. Kurtis
Kratina, Pavel
Debastiani, Vanderlei J.
Gonçalves, Ana Z.
Marino, Nicholas A. C.
Farjalla, Vinicius F.
Richardson, Barbara A.
Richardson, Michael J.
Dézerald, Olivier
Gilbert, Benjamin
Petermann, Jana
Talaga, Stanislas
Piccoli, Gustavo C. O.
Jocqué, Merlijn
Montero, Guillermo
dc.subject.por.fl_str_mv aquatic invertebrates
ecological strategies
functional diversity
functional trait space
niche hypervolume
topic aquatic invertebrates
ecological strategies
functional diversity
functional trait space
niche hypervolume
description Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-01
2022-04-28T19:26:17Z
2022-04-28T19:26:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1111/1365-2435.13141
Functional Ecology, v. 32, n. 10, p. 2435-2447, 2018.
1365-2435
0269-8463
http://hdl.handle.net/11449/221175
10.1111/1365-2435.13141
2-s2.0-85054310408
url http://dx.doi.org/10.1111/1365-2435.13141
http://hdl.handle.net/11449/221175
identifier_str_mv Functional Ecology, v. 32, n. 10, p. 2435-2447, 2018.
1365-2435
0269-8463
10.1111/1365-2435.13141
2-s2.0-85054310408
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Functional Ecology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2435-2447
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1797790412939722752