Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

Detalhes bibliográficos
Autor(a) principal: Almeida, Clara M.
Data de Publicação: 2016
Outros Autores: Prioli, Rodrigo, Fragneaud, Benjamin, Cancado, Luiz Gustavo, Paupitz, Ricardo [UNESP], Galvao, Douglas S., De Cicco, Marcelo, Menezes, Marcos G., Achete, Carlos A., Capaz, Rodrigo B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1038/srep31569
http://hdl.handle.net/11449/161827
Resumo: The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.
id UNSP_5a0c70c43826d3d6736f759a44a50b8a
oai_identifier_str oai:repositorio.unesp.br:11449/161827
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Giant and Tunable Anisotropy of Nanoscale Friction in GrapheneThe nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)grant PRONAMETROInst Nacl Metrol Normalizacao & Qualidade Ind INI, Div Metrol Mat, Campus Xerem,Av Nossa Senhora das Gracas 50, BR-25250020 Duque De Caxias, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Fis, R Marques de Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, BrazilInst Cidncias Exatas, Dept Fis, BR-36036900 Juiz De Fora, MG, BrazilUniv Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, BrazilUniv Estadual Paulista, Dept Fis, Campus Rio Claro,Av 24A 1515, BR-13506900 Rio Claro, SP, BrazilUniv Estadual Campinas, Inst Fis Gleb Wataghin, R Sergio Buarque de Holanda,777 Cidade Univ, BR-13083859 Campinas, SP, BrazilUniv Fed Rio de Janeiro, Inst Fis, Av Athos da Silveira Ramos,149 Cidade Univ, BR-21941590 Rio De Janeiro, RJ, BrazilUniv Estadual Paulista, Dept Fis, Campus Rio Claro,Av 24A 1515, BR-13506900 Rio Claro, SP, BrazilFAPESP: 2014/15521-9FAPESP: 2013/08293-7grant PRONAMETRO: 52600.056330/2012grant PRONAMETRO: 52600.030929/2014Nature Publishing GroupInst Nacl Metrol Normalizacao & Qualidade Ind INIPontificia Univ Catolica Rio de JaneiroInst Cidncias ExatasUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Universidade Federal do Rio de Janeiro (UFRJ)Almeida, Clara M.Prioli, RodrigoFragneaud, BenjaminCancado, Luiz GustavoPaupitz, Ricardo [UNESP]Galvao, Douglas S.De Cicco, MarceloMenezes, Marcos G.Achete, Carlos A.Capaz, Rodrigo B.2018-11-26T16:56:23Z2018-11-26T16:56:23Z2016-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9application/pdfhttp://dx.doi.org/10.1038/srep31569Scientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016.2045-2322http://hdl.handle.net/11449/16182710.1038/srep31569WOS:000381558500001WOS000381558500001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientific Reports1,533info:eu-repo/semantics/openAccess2024-01-11T06:32:50Zoai:repositorio.unesp.br:11449/161827Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-01-11T06:32:50Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
title Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
spellingShingle Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
Almeida, Clara M.
title_short Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
title_full Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
title_fullStr Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
title_full_unstemmed Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
title_sort Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
author Almeida, Clara M.
author_facet Almeida, Clara M.
Prioli, Rodrigo
Fragneaud, Benjamin
Cancado, Luiz Gustavo
Paupitz, Ricardo [UNESP]
Galvao, Douglas S.
De Cicco, Marcelo
Menezes, Marcos G.
Achete, Carlos A.
Capaz, Rodrigo B.
author_role author
author2 Prioli, Rodrigo
Fragneaud, Benjamin
Cancado, Luiz Gustavo
Paupitz, Ricardo [UNESP]
Galvao, Douglas S.
De Cicco, Marcelo
Menezes, Marcos G.
Achete, Carlos A.
Capaz, Rodrigo B.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Inst Nacl Metrol Normalizacao & Qualidade Ind INI
Pontificia Univ Catolica Rio de Janeiro
Inst Cidncias Exatas
Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Universidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.author.fl_str_mv Almeida, Clara M.
Prioli, Rodrigo
Fragneaud, Benjamin
Cancado, Luiz Gustavo
Paupitz, Ricardo [UNESP]
Galvao, Douglas S.
De Cicco, Marcelo
Menezes, Marcos G.
Achete, Carlos A.
Capaz, Rodrigo B.
description The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-18
2018-11-26T16:56:23Z
2018-11-26T16:56:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1038/srep31569
Scientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016.
2045-2322
http://hdl.handle.net/11449/161827
10.1038/srep31569
WOS:000381558500001
WOS000381558500001.pdf
url http://dx.doi.org/10.1038/srep31569
http://hdl.handle.net/11449/161827
identifier_str_mv Scientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016.
2045-2322
10.1038/srep31569
WOS:000381558500001
WOS000381558500001.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Scientific Reports
1,533
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 9
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965590451912704