Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration

Detalhes bibliográficos
Autor(a) principal: Nunes, Leandro Silva
Data de Publicação: 2022
Outros Autores: Domingues, William Borges, Kremer, Frederico Schmitt, Pinhal, Danillo [UNESP], Campos, Vinicius Farias
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.gene.2022.146242
http://hdl.handle.net/11449/230320
Resumo: The limited regenerative capacity in mammals has serious implications for cardiac tissue damage. Meanwhile, zebrafish has a high regenerative capacity, but the regulation of the heart healing process has yet to be elucidated. The dynamic nature of cardiac regeneration requires consideration of the inherent temporal dimension of this process. Here, we conducted a systematic review to find genes that define the regenerative cell state of the zebrafish heart. We then performed an in silico temporal gene regulatory network analysis using transcriptomic data from the zebrafish heart regenerative process obtained from databases. In this analysis, the genes found in the systematic review were used to represent the final cell state of the transition process from a non-regenerative cell state to a regenerative state. We found 135 transcription factors driving the cellular state transition process during zebrafish cardiac regeneration, including Hand2, Nkx2.5, Tbx20, Fosl1, Fosb, Junb, Vdr, Wt1, and Tcf21 previously reported for playing a key role in tissue regeneration. Furthermore, we demonstrate that most regulators are activated in the first days post-injury, indicating that the transition from a non-regenerative to a regenerative state occurs promptly.
id UNSP_8c355a79c3c8a66d643a4140f8d51cc7
oai_identifier_str oai:repositorio.unesp.br:11449/230320
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regenerationDanio rerioHeartRegenerationRegulationTranscription factorsThe limited regenerative capacity in mammals has serious implications for cardiac tissue damage. Meanwhile, zebrafish has a high regenerative capacity, but the regulation of the heart healing process has yet to be elucidated. The dynamic nature of cardiac regeneration requires consideration of the inherent temporal dimension of this process. Here, we conducted a systematic review to find genes that define the regenerative cell state of the zebrafish heart. We then performed an in silico temporal gene regulatory network analysis using transcriptomic data from the zebrafish heart regenerative process obtained from databases. In this analysis, the genes found in the systematic review were used to represent the final cell state of the transition process from a non-regenerative cell state to a regenerative state. We found 135 transcription factors driving the cellular state transition process during zebrafish cardiac regeneration, including Hand2, Nkx2.5, Tbx20, Fosl1, Fosb, Junb, Vdr, Wt1, and Tcf21 previously reported for playing a key role in tissue regeneration. Furthermore, we demonstrate that most regulators are activated in the first days post-injury, indicating that the transition from a non-regenerative to a regenerative state occurs promptly.Fundação de Amparo à Pesquisa do Estado do Rio Grande do SulLaboratório de Genômica Estrutural Programa de Pós-Graduação em Biotecnologia Centro de Desenvolvimento Tecnológico Universidade Federal de PelotasLaboratório de Bioinformática e Proteômica Programa de Pós-Graduação em Biotecnologia Centro de Desenvolvimento Tecnológico Universidade Federal de PelotasLaboratório Genômica e Evolução Molecular Departamento de Genética Instituto de Biociências de Botucatu Universidade Estadual Paulista (UNESP)Laboratório Genômica e Evolução Molecular Departamento de Genética Instituto de Biociências de Botucatu Universidade Estadual Paulista (UNESP)Universidade Federal de PelotasUniversidade Estadual Paulista (UNESP)Nunes, Leandro SilvaDomingues, William BorgesKremer, Frederico SchmittPinhal, Danillo [UNESP]Campos, Vinicius Farias2022-04-29T08:39:19Z2022-04-29T08:39:19Z2022-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.gene.2022.146242Gene, v. 819.1879-00380378-1119http://hdl.handle.net/11449/23032010.1016/j.gene.2022.1462422-s2.0-85123870560Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeneinfo:eu-repo/semantics/openAccess2022-04-29T08:39:19Zoai:repositorio.unesp.br:11449/230320Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-04-29T08:39:19Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
title Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
spellingShingle Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
Nunes, Leandro Silva
Danio rerio
Heart
Regeneration
Regulation
Transcription factors
title_short Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
title_full Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
title_fullStr Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
title_full_unstemmed Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
title_sort Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration
author Nunes, Leandro Silva
author_facet Nunes, Leandro Silva
Domingues, William Borges
Kremer, Frederico Schmitt
Pinhal, Danillo [UNESP]
Campos, Vinicius Farias
author_role author
author2 Domingues, William Borges
Kremer, Frederico Schmitt
Pinhal, Danillo [UNESP]
Campos, Vinicius Farias
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Pelotas
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Nunes, Leandro Silva
Domingues, William Borges
Kremer, Frederico Schmitt
Pinhal, Danillo [UNESP]
Campos, Vinicius Farias
dc.subject.por.fl_str_mv Danio rerio
Heart
Regeneration
Regulation
Transcription factors
topic Danio rerio
Heart
Regeneration
Regulation
Transcription factors
description The limited regenerative capacity in mammals has serious implications for cardiac tissue damage. Meanwhile, zebrafish has a high regenerative capacity, but the regulation of the heart healing process has yet to be elucidated. The dynamic nature of cardiac regeneration requires consideration of the inherent temporal dimension of this process. Here, we conducted a systematic review to find genes that define the regenerative cell state of the zebrafish heart. We then performed an in silico temporal gene regulatory network analysis using transcriptomic data from the zebrafish heart regenerative process obtained from databases. In this analysis, the genes found in the systematic review were used to represent the final cell state of the transition process from a non-regenerative cell state to a regenerative state. We found 135 transcription factors driving the cellular state transition process during zebrafish cardiac regeneration, including Hand2, Nkx2.5, Tbx20, Fosl1, Fosb, Junb, Vdr, Wt1, and Tcf21 previously reported for playing a key role in tissue regeneration. Furthermore, we demonstrate that most regulators are activated in the first days post-injury, indicating that the transition from a non-regenerative to a regenerative state occurs promptly.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-29T08:39:19Z
2022-04-29T08:39:19Z
2022-04-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.gene.2022.146242
Gene, v. 819.
1879-0038
0378-1119
http://hdl.handle.net/11449/230320
10.1016/j.gene.2022.146242
2-s2.0-85123870560
url http://dx.doi.org/10.1016/j.gene.2022.146242
http://hdl.handle.net/11449/230320
identifier_str_mv Gene, v. 819.
1879-0038
0378-1119
10.1016/j.gene.2022.146242
2-s2.0-85123870560
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gene
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965558070837248