Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel

Detalhes bibliográficos
Autor(a) principal: Escobar, J. D.
Data de Publicação: 2021
Outros Autores: Delfino, P. M., Ariza-Echeverri, E. A., Carvalho, F. M., Schell, N., Stark, A., Rodrigues, T. A., Oliveira, J. P., Avila, J. A. [UNESP], Goldenstein, H., Tschiptschin, A. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.matchar.2021.111567
http://hdl.handle.net/11449/222864
Resumo: Understanding the kinetics of microstructural degradation during the event of a fire is of major relevance to future optimization of fire-resistant steels (FRS). In this work, we use in situ synchrotron X-ray diffraction to assess the rapid thermally-assisted degradation of different starting microstructures, such as (i) ferrite + pearlite; (ii) bainite + retained austenite, and (iii) martensite + retained austenite, during the simulation of a fire cycle in a Fe-0.13C-0.11Cr-0.38Mo-0.04V FRS. Our results show that retained austenite is the most unstable phase, especially when generated by faster cooling rates, decomposing at temperatures as low as 180 °C during fire simulations. Bainite and martensite are both unstable and undergo recovery and carbon desaturation via secondary precipitation of cementite. However, bainite is comparatively more stable than martensite since its decomposition starts at 400 °C, while for martensite it occurs at 320 °C. We also present a methodology to deconvolute the effect of temperature on the increased background and signal intensities of the X-ray spectra, allowing the direct observation of the kinetics of secondary cementite precipitation.
id UNSP_be45686c6ea7c7e41e25c1801ad69144
oai_identifier_str oai:repositorio.unesp.br:11449/222864
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steelFire-resistant steelRetained austeniteSecondary cementiteSynchrotron X-ray diffractionUnderstanding the kinetics of microstructural degradation during the event of a fire is of major relevance to future optimization of fire-resistant steels (FRS). In this work, we use in situ synchrotron X-ray diffraction to assess the rapid thermally-assisted degradation of different starting microstructures, such as (i) ferrite + pearlite; (ii) bainite + retained austenite, and (iii) martensite + retained austenite, during the simulation of a fire cycle in a Fe-0.13C-0.11Cr-0.38Mo-0.04V FRS. Our results show that retained austenite is the most unstable phase, especially when generated by faster cooling rates, decomposing at temperatures as low as 180 °C during fire simulations. Bainite and martensite are both unstable and undergo recovery and carbon desaturation via secondary precipitation of cementite. However, bainite is comparatively more stable than martensite since its decomposition starts at 400 °C, while for martensite it occurs at 320 °C. We also present a methodology to deconvolute the effect of temperature on the increased background and signal intensities of the X-ray spectra, allowing the direct observation of the kinetics of secondary cementite precipitation.Companhia Brasileira de Metalurgia e MineraçãoLaboratório Nacional de NanotecnologiaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para a Ciência e a TecnologiaMetallurgical and Materials Engineering Department University of São Paulo, Av. Prof. Mello MoraesEscuela de Tecnología Mecánica Universidad Tecnológica de Pereira, Carrera 27 #10-02 Alamos, PereiraMetallurgical Processes Laboratory Institute for Technological Research, Av. Prof. Almeida PradoInstitute of Materials Physics Helmholtz-Zentrum Hereon, Max-Planck-Str. 1UNIDEMI Department of Mechanical and Industrial Engineering NOVA School of Science and Technology Universidade NOVA de LisboaSão Paulo State University (UNESP) Campus of São João da Boa Vista, Av. Profª Isette Corrêa Fontão, 505, Jardim das FloresSão Paulo State University (UNESP) Campus of São João da Boa Vista, Av. Profª Isette Corrêa Fontão, 505, Jardim das FloresFAPESP: 2017/17697-5FAPESP: 2018/21251-5FAPESP: 2019/00691-0Fundação para a Ciência e a Tecnologia: UID/00667/2020Universidade de São Paulo (USP)Universidad Tecnológica de PereiraInstitute for Technological ResearchHelmholtz-Zentrum HereonUniversidade NOVA de LisboaUniversidade Estadual Paulista (UNESP)Escobar, J. D.Delfino, P. M.Ariza-Echeverri, E. A.Carvalho, F. M.Schell, N.Stark, A.Rodrigues, T. A.Oliveira, J. P.Avila, J. A. [UNESP]Goldenstein, H.Tschiptschin, A. P.2022-04-28T19:47:12Z2022-04-28T19:47:12Z2021-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.matchar.2021.111567Materials Characterization, v. 182.1044-5803http://hdl.handle.net/11449/22286410.1016/j.matchar.2021.1115672-s2.0-85119084084Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Characterizationinfo:eu-repo/semantics/openAccess2022-04-28T19:47:12Zoai:repositorio.unesp.br:11449/222864Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-04-28T19:47:12Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
title Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
spellingShingle Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
Escobar, J. D.
Fire-resistant steel
Retained austenite
Secondary cementite
Synchrotron X-ray diffraction
title_short Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
title_full Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
title_fullStr Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
title_full_unstemmed Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
title_sort Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel
author Escobar, J. D.
author_facet Escobar, J. D.
Delfino, P. M.
Ariza-Echeverri, E. A.
Carvalho, F. M.
Schell, N.
Stark, A.
Rodrigues, T. A.
Oliveira, J. P.
Avila, J. A. [UNESP]
Goldenstein, H.
Tschiptschin, A. P.
author_role author
author2 Delfino, P. M.
Ariza-Echeverri, E. A.
Carvalho, F. M.
Schell, N.
Stark, A.
Rodrigues, T. A.
Oliveira, J. P.
Avila, J. A. [UNESP]
Goldenstein, H.
Tschiptschin, A. P.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidad Tecnológica de Pereira
Institute for Technological Research
Helmholtz-Zentrum Hereon
Universidade NOVA de Lisboa
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Escobar, J. D.
Delfino, P. M.
Ariza-Echeverri, E. A.
Carvalho, F. M.
Schell, N.
Stark, A.
Rodrigues, T. A.
Oliveira, J. P.
Avila, J. A. [UNESP]
Goldenstein, H.
Tschiptschin, A. P.
dc.subject.por.fl_str_mv Fire-resistant steel
Retained austenite
Secondary cementite
Synchrotron X-ray diffraction
topic Fire-resistant steel
Retained austenite
Secondary cementite
Synchrotron X-ray diffraction
description Understanding the kinetics of microstructural degradation during the event of a fire is of major relevance to future optimization of fire-resistant steels (FRS). In this work, we use in situ synchrotron X-ray diffraction to assess the rapid thermally-assisted degradation of different starting microstructures, such as (i) ferrite + pearlite; (ii) bainite + retained austenite, and (iii) martensite + retained austenite, during the simulation of a fire cycle in a Fe-0.13C-0.11Cr-0.38Mo-0.04V FRS. Our results show that retained austenite is the most unstable phase, especially when generated by faster cooling rates, decomposing at temperatures as low as 180 °C during fire simulations. Bainite and martensite are both unstable and undergo recovery and carbon desaturation via secondary precipitation of cementite. However, bainite is comparatively more stable than martensite since its decomposition starts at 400 °C, while for martensite it occurs at 320 °C. We also present a methodology to deconvolute the effect of temperature on the increased background and signal intensities of the X-ray spectra, allowing the direct observation of the kinetics of secondary cementite precipitation.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-01
2022-04-28T19:47:12Z
2022-04-28T19:47:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.matchar.2021.111567
Materials Characterization, v. 182.
1044-5803
http://hdl.handle.net/11449/222864
10.1016/j.matchar.2021.111567
2-s2.0-85119084084
url http://dx.doi.org/10.1016/j.matchar.2021.111567
http://hdl.handle.net/11449/222864
identifier_str_mv Materials Characterization, v. 182.
1044-5803
10.1016/j.matchar.2021.111567
2-s2.0-85119084084
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Characterization
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1797790339243704320