Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel

Detalhes bibliográficos
Autor(a) principal: Conde, F. F.
Data de Publicação: 2019
Outros Autores: Escobar, J. D., Oliveira, J. P., Béreš, M., Jardini, A. L., Bose, W. W., Avila, J. A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.msea.2019.03.129
http://hdl.handle.net/11449/187655
Resumo: Additive manufacturing techniques allow the creation of complex parts in a layer by layer fashion, bringing new opportunities in terms of applications and properties when compared to conventional manufacturing processes. Among other ultra-high-strength steels, the 18 Ni maraging 300 steel offers a good toughness/strength ratio. However, when fabricated by additive manufacturing, this steel presents lower ductility and strain-hardening than its forging counterparts. One way to enhance ductility and toughness is to promote martensite-to-austenite reversion. Therefore, in the present study, 18 Ni maraging steel powder was processed by selective laser melting and different heat treatments were applied to the built parts, aiming for homogenization, microstructural refinement and martensite-to-austenite reversion. Thermodynamic simulations were used to assess a range of temperatures for the reversion heat treatments. Microstructural characterization was performed by scanning electron microscopy, electron backscattered diffraction and x-ray diffraction.
id UNSP_ddd05220943b1ddfb96adc1ba5662bf9
oai_identifier_str oai:repositorio.unesp.br:11449/187655
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel18 NiAdditive manufacturing selective laser melting ductilityMaraging 300Additive manufacturing techniques allow the creation of complex parts in a layer by layer fashion, bringing new opportunities in terms of applications and properties when compared to conventional manufacturing processes. Among other ultra-high-strength steels, the 18 Ni maraging 300 steel offers a good toughness/strength ratio. However, when fabricated by additive manufacturing, this steel presents lower ductility and strain-hardening than its forging counterparts. One way to enhance ductility and toughness is to promote martensite-to-austenite reversion. Therefore, in the present study, 18 Ni maraging steel powder was processed by selective laser melting and different heat treatments were applied to the built parts, aiming for homogenization, microstructural refinement and martensite-to-austenite reversion. Thermodynamic simulations were used to assess a range of temperatures for the reversion heat treatments. Microstructural characterization was performed by scanning electron microscopy, electron backscattered diffraction and x-ray diffraction.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Materials Engineering University of Sao Paulo (USP), Av. Joao Dagnone, 1100 Jd. Sta AngelinaMetallurgical and Materials Engineering University of São Paulo, SP,10 Av.Prof. Mello Moraes 2463UNIDEMI Departamento de Engenharia Mecânica e Industrial Faculdade de Ciências e Tecnologia Universidade Nova de LisboaNational Institute of Biofabrication (BIOFABRIS) Faculty of Chemical Engineering State University of Campinas, Av. Albert Einstein 500UNESP – São Paulo State University Campus of São João da Boa Vista, Av. Profa Isette Corrêa Fontão, 505, Jardim Das FloresUNESP – São Paulo State University Campus of São João da Boa Vista, Av. Profa Isette Corrêa Fontão, 505, Jardim Das FloresFAPESP: 2008/57863-0FAPESP: 2017/17697-5CNPq: 573661/2008-1Universidade de São Paulo (USP)Universidade Nova de LisboaUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Conde, F. F.Escobar, J. D.Oliveira, J. P.Béreš, M.Jardini, A. L.Bose, W. W.Avila, J. A. [UNESP]2019-10-06T15:43:10Z2019-10-06T15:43:10Z2019-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article192-201http://dx.doi.org/10.1016/j.msea.2019.03.129Materials Science and Engineering A, v. 758, p. 192-201.0921-5093http://hdl.handle.net/11449/18765510.1016/j.msea.2019.03.1292-s2.0-85065588611Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Science and Engineering Ainfo:eu-repo/semantics/openAccess2021-10-23T09:20:13Zoai:repositorio.unesp.br:11449/187655Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T09:20:13Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
title Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
spellingShingle Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
Conde, F. F.
18 Ni
Additive manufacturing selective laser melting ductility
Maraging 300
title_short Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
title_full Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
title_fullStr Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
title_full_unstemmed Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
title_sort Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel
author Conde, F. F.
author_facet Conde, F. F.
Escobar, J. D.
Oliveira, J. P.
Béreš, M.
Jardini, A. L.
Bose, W. W.
Avila, J. A. [UNESP]
author_role author
author2 Escobar, J. D.
Oliveira, J. P.
Béreš, M.
Jardini, A. L.
Bose, W. W.
Avila, J. A. [UNESP]
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Nova de Lisboa
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Conde, F. F.
Escobar, J. D.
Oliveira, J. P.
Béreš, M.
Jardini, A. L.
Bose, W. W.
Avila, J. A. [UNESP]
dc.subject.por.fl_str_mv 18 Ni
Additive manufacturing selective laser melting ductility
Maraging 300
topic 18 Ni
Additive manufacturing selective laser melting ductility
Maraging 300
description Additive manufacturing techniques allow the creation of complex parts in a layer by layer fashion, bringing new opportunities in terms of applications and properties when compared to conventional manufacturing processes. Among other ultra-high-strength steels, the 18 Ni maraging 300 steel offers a good toughness/strength ratio. However, when fabricated by additive manufacturing, this steel presents lower ductility and strain-hardening than its forging counterparts. One way to enhance ductility and toughness is to promote martensite-to-austenite reversion. Therefore, in the present study, 18 Ni maraging steel powder was processed by selective laser melting and different heat treatments were applied to the built parts, aiming for homogenization, microstructural refinement and martensite-to-austenite reversion. Thermodynamic simulations were used to assess a range of temperatures for the reversion heat treatments. Microstructural characterization was performed by scanning electron microscopy, electron backscattered diffraction and x-ray diffraction.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T15:43:10Z
2019-10-06T15:43:10Z
2019-06-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.msea.2019.03.129
Materials Science and Engineering A, v. 758, p. 192-201.
0921-5093
http://hdl.handle.net/11449/187655
10.1016/j.msea.2019.03.129
2-s2.0-85065588611
url http://dx.doi.org/10.1016/j.msea.2019.03.129
http://hdl.handle.net/11449/187655
identifier_str_mv Materials Science and Engineering A, v. 758, p. 192-201.
0921-5093
10.1016/j.msea.2019.03.129
2-s2.0-85065588611
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Science and Engineering A
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 192-201
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965139692158976