Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries

Detalhes bibliográficos
Autor(a) principal: Xavier, Camila Soares [UNESP]
Data de Publicação: 2014
Outros Autores: Paskocimas, Carlos Alberto, Motta, Fabiana Villela Da, Araújo, Vinícius Dantas, Aragón, Maria José, Tirado, José Luís, Lavela, Pedro, Longo, Elson [UNESP], Delmonte, Mauricio Roberto Bomio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/1516-1439.264714
http://hdl.handle.net/11449/114336
Resumo: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Fe3O4 deserves great attention as one of the most important electrode active materials due to its high theoretical capacity (926 mAhg- 1), low cost, being environmental-friendly and naturally abundance in worldwide. A simple strategy to synthesize magnetite nanoparticles (Fe3O4) by microwave-assisted hydrothermal method in a short processing time without further treatment is reported. The material obtained was tested as anode active material for lithium ions batteries. Impedance spectroscopy revealed that small differences in cell performance on cycling observed between samples cannot be strictly correlated to cell resistance. A high reversible capacity of 768.5 mAhg- 1 at 1C over 50 cycles was demonstrated, suggesting its prospective use as anode material for high power lithium ion batteries.
id UNSP_eb01efb24195519f05b3bee73d857eed
oai_identifier_str oai:repositorio.unesp.br:11449/114336
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteriesmagnetitenanoparticlesMicrowave hydrothermal (MH)Lithium ion batteriesanode active materialRechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Fe3O4 deserves great attention as one of the most important electrode active materials due to its high theoretical capacity (926 mAhg- 1), low cost, being environmental-friendly and naturally abundance in worldwide. A simple strategy to synthesize magnetite nanoparticles (Fe3O4) by microwave-assisted hydrothermal method in a short processing time without further treatment is reported. The material obtained was tested as anode active material for lithium ions batteries. Impedance spectroscopy revealed that small differences in cell performance on cycling observed between samples cannot be strictly correlated to cell resistance. A high reversible capacity of 768.5 mAhg- 1 at 1C over 50 cycles was demonstrated, suggesting its prospective use as anode material for high power lithium ion batteries.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista Instituto de QuímicaUniversidade Federal do Rio Grande do Norte Departamento de Engenharia de Materiais Laboratório de Síntese Química de MateriaisUniversidad de Córdoba Laboratorio de Química InorgánicaUniversidade Estadual Paulista Instituto de QuímicaABM, ABC, ABPolUniversidade Estadual Paulista (Unesp)Universidade Federal do Rio Grande do Norte (UFRN)Universidad de Córdoba Laboratorio de Química InorgánicaXavier, Camila Soares [UNESP]Paskocimas, Carlos AlbertoMotta, Fabiana Villela DaAraújo, Vinícius DantasAragón, Maria JoséTirado, José LuísLavela, PedroLongo, Elson [UNESP]Delmonte, Mauricio Roberto Bomio2015-02-02T12:39:27Z2015-02-02T12:39:27Z2014-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1065-1070application/pdfhttp://dx.doi.org/10.1590/1516-1439.264714Materials Research. ABM, ABC, ABPol, v. 17, n. 4, p. 1065-1070, 2014.1516-1439http://hdl.handle.net/11449/11433610.1590/1516-1439.264714S1516-14392014000400033S1516-14392014000400033.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Research1.1030,398info:eu-repo/semantics/openAccess2023-10-21T06:07:00Zoai:repositorio.unesp.br:11449/114336Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462023-10-21T06:07Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
title Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
spellingShingle Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
Xavier, Camila Soares [UNESP]
magnetite
nanoparticles
Microwave hydrothermal (MH)
Lithium ion batteries
anode active material
title_short Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
title_full Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
title_fullStr Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
title_full_unstemmed Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
title_sort Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
author Xavier, Camila Soares [UNESP]
author_facet Xavier, Camila Soares [UNESP]
Paskocimas, Carlos Alberto
Motta, Fabiana Villela Da
Araújo, Vinícius Dantas
Aragón, Maria José
Tirado, José Luís
Lavela, Pedro
Longo, Elson [UNESP]
Delmonte, Mauricio Roberto Bomio
author_role author
author2 Paskocimas, Carlos Alberto
Motta, Fabiana Villela Da
Araújo, Vinícius Dantas
Aragón, Maria José
Tirado, José Luís
Lavela, Pedro
Longo, Elson [UNESP]
Delmonte, Mauricio Roberto Bomio
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal do Rio Grande do Norte (UFRN)
Universidad de Córdoba Laboratorio de Química Inorgánica
dc.contributor.author.fl_str_mv Xavier, Camila Soares [UNESP]
Paskocimas, Carlos Alberto
Motta, Fabiana Villela Da
Araújo, Vinícius Dantas
Aragón, Maria José
Tirado, José Luís
Lavela, Pedro
Longo, Elson [UNESP]
Delmonte, Mauricio Roberto Bomio
dc.subject.por.fl_str_mv magnetite
nanoparticles
Microwave hydrothermal (MH)
Lithium ion batteries
anode active material
topic magnetite
nanoparticles
Microwave hydrothermal (MH)
Lithium ion batteries
anode active material
description Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Fe3O4 deserves great attention as one of the most important electrode active materials due to its high theoretical capacity (926 mAhg- 1), low cost, being environmental-friendly and naturally abundance in worldwide. A simple strategy to synthesize magnetite nanoparticles (Fe3O4) by microwave-assisted hydrothermal method in a short processing time without further treatment is reported. The material obtained was tested as anode active material for lithium ions batteries. Impedance spectroscopy revealed that small differences in cell performance on cycling observed between samples cannot be strictly correlated to cell resistance. A high reversible capacity of 768.5 mAhg- 1 at 1C over 50 cycles was demonstrated, suggesting its prospective use as anode material for high power lithium ion batteries.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-01
2015-02-02T12:39:27Z
2015-02-02T12:39:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1516-1439.264714
Materials Research. ABM, ABC, ABPol, v. 17, n. 4, p. 1065-1070, 2014.
1516-1439
http://hdl.handle.net/11449/114336
10.1590/1516-1439.264714
S1516-14392014000400033
S1516-14392014000400033.pdf
url http://dx.doi.org/10.1590/1516-1439.264714
http://hdl.handle.net/11449/114336
identifier_str_mv Materials Research. ABM, ABC, ABPol, v. 17, n. 4, p. 1065-1070, 2014.
1516-1439
10.1590/1516-1439.264714
S1516-14392014000400033
S1516-14392014000400033.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Research
1.103
0,398
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1065-1070
application/pdf
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1797789463551672320