Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril

Detalhes bibliográficos
Autor(a) principal: Maira Artischeff Frutuoso
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.46.2019.tde-25112019-162943
Resumo: Domínios são definidos como unidades de dobramento independente e estáveis que formam a estrutura das proteínas (Richardson, 1981; Dootlitle, 1995; Porter e Rose, 2012). Interessantemente quando esta definição é aplicada na análise de proteínas com dobramento (β/α)8 barril identificam-se 2 domínios, que correspondem as suas metades N- e C-terminais (Porter e Rose, 2012), contrastando com a visão que assume o (β/α)8 barril como um domínio único. Deste modo, considerando então que as metades N-terminal e C-terminal das proteínas (β/α)8 barril sejam consideravelmente estáveis e independentes, o objetivo geral desta tese foi avaliar como as propriedades individuais destes subdomínios (β/α)4 se combinam e definem tanto a estabilidade quanto a atividade catalítica das β-glicosidases GH1, que possuem estrutura (β/α)8 barril. As β-glicosidases bglA de Thermotoga marítima (uma bactéria termófila), bglA e bglB de Paenibacillus polymyxa (uma bactéria mesófila) e proteínas quiméricas originadas da combinação dos subdomínios (β/α)4 entre duas destas β-glicosidases (NbglThm-CbglB, NbglB-CbglThm, NbglThm-CbglA, NbglA-CbglThm, NbglA-CbglB e NbglB-CbglA) foram os modelos experimentais. As β-glicosidases bglA, bglB e bglThm foram produzidas como proteínas recombinantes e purificadas. Apenas NbglA-CsbglThm pode ser purificada solúvel e ativa. A fluorescência de triptofanos e o dicroísmo circular sugerem que as β-glicosidases selvagens e a quimera estão enoveladas. Além disso, NbglA-CbglThm apresenta uma composição de estrutura secundária mais próxima à bglA do que bglThm. Por outro lado, o acesso do supressor acrilamida aos triptofanos de NbglA-CbglThm é igual a bglThm e menor do que bglA. A Tm e o Kobs de inativação a 47°C de NbglA-CbglThm são intermediárias àquelas de bglA e bglThm. Portanto, a termoestabilidade da quimera é uma ponderação daquela das suas proteínas parentais. NbglA-CbglThm possui atividade enzimática independente do pH, enquanto bglA e bglThm exibem uma curva em sino. Ainda, NbglA-CbglThm mostrou menor atividade enzimática, ilustrada pela queda dos kcat para os substratos estudados. Considerando que funcionamento do sítio ativo das β-glicosidases depende do posicionamento relativo de pelo menos dez resíduos, estas mudanças na quimera não são inesperadas. NbglA-CbglThm possui Km intermediário para os substratos pNPβ- Gluco e pNPβ-Fuco em relação a bglA e bglThm. Adicionalmente, a especificidade pelo substrato de NbglA-CbglThm é uma ponderação daquela de bglA e bglThm, pois enquanto estas parentais exibiram preferência por um destes substratos, a quimera apresenta o mesmo kcat/Km para os dois. Deste modo, a caracterização da atividade enzimática sugere que as metades (β/α)4 que compõem a quimera NbglA-CbglThm provavelmente se dobraram autossuficientemente e se ajustaram formando um sítio ativo funcional. Coerentemente, a estabilidade térmica intermediária da quimera também sugere que as metades (β/α)4 das proteínas parentais mantiveram sua termoestabilidade relativamente independente. Em conjunto estas observações implicam em razoável estabilidade e independência termodinâmica no dobramento de cada uma das metades (β/α)4, funcionando, portanto, como unidades praticamente independentes, ou seja, como domínios.
id USP_519a590b95376d66b67eb8ba009f7bf6
oai_identifier_str oai:teses.usp.br:tde-25112019-162943
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril Contribution of (β/α)4 subdomains to the stability and activity of β-glycosidases GH1 with (β/α)8 barrel structure 2019-10-04Sandro Roberto MaranaCristiane Rodrigues Guzzo CarvalhoRoberto Kopke SalinasIvarne Luis dos Santos TersariolMaira Artischeff FrutuosoUniversidade de São PauloCiências Biológicas (Bioquímica)USPBR β-glicosidases GH1 β-glycosidases GH1 (β/α)8 barrel (β/α)8 barril Subdomains Subdomínios Domínios são definidos como unidades de dobramento independente e estáveis que formam a estrutura das proteínas (Richardson, 1981; Dootlitle, 1995; Porter e Rose, 2012). Interessantemente quando esta definição é aplicada na análise de proteínas com dobramento (β/α)8 barril identificam-se 2 domínios, que correspondem as suas metades N- e C-terminais (Porter e Rose, 2012), contrastando com a visão que assume o (β/α)8 barril como um domínio único. Deste modo, considerando então que as metades N-terminal e C-terminal das proteínas (β/α)8 barril sejam consideravelmente estáveis e independentes, o objetivo geral desta tese foi avaliar como as propriedades individuais destes subdomínios (β/α)4 se combinam e definem tanto a estabilidade quanto a atividade catalítica das β-glicosidases GH1, que possuem estrutura (β/α)8 barril. As β-glicosidases bglA de Thermotoga marítima (uma bactéria termófila), bglA e bglB de Paenibacillus polymyxa (uma bactéria mesófila) e proteínas quiméricas originadas da combinação dos subdomínios (β/α)4 entre duas destas β-glicosidases (NbglThm-CbglB, NbglB-CbglThm, NbglThm-CbglA, NbglA-CbglThm, NbglA-CbglB e NbglB-CbglA) foram os modelos experimentais. As β-glicosidases bglA, bglB e bglThm foram produzidas como proteínas recombinantes e purificadas. Apenas NbglA-CsbglThm pode ser purificada solúvel e ativa. A fluorescência de triptofanos e o dicroísmo circular sugerem que as β-glicosidases selvagens e a quimera estão enoveladas. Além disso, NbglA-CbglThm apresenta uma composição de estrutura secundária mais próxima à bglA do que bglThm. Por outro lado, o acesso do supressor acrilamida aos triptofanos de NbglA-CbglThm é igual a bglThm e menor do que bglA. A Tm e o Kobs de inativação a 47°C de NbglA-CbglThm são intermediárias àquelas de bglA e bglThm. Portanto, a termoestabilidade da quimera é uma ponderação daquela das suas proteínas parentais. NbglA-CbglThm possui atividade enzimática independente do pH, enquanto bglA e bglThm exibem uma curva em sino. Ainda, NbglA-CbglThm mostrou menor atividade enzimática, ilustrada pela queda dos kcat para os substratos estudados. Considerando que funcionamento do sítio ativo das β-glicosidases depende do posicionamento relativo de pelo menos dez resíduos, estas mudanças na quimera não são inesperadas. NbglA-CbglThm possui Km intermediário para os substratos pNPβ- Gluco e pNPβ-Fuco em relação a bglA e bglThm. Adicionalmente, a especificidade pelo substrato de NbglA-CbglThm é uma ponderação daquela de bglA e bglThm, pois enquanto estas parentais exibiram preferência por um destes substratos, a quimera apresenta o mesmo kcat/Km para os dois. Deste modo, a caracterização da atividade enzimática sugere que as metades (β/α)4 que compõem a quimera NbglA-CbglThm provavelmente se dobraram autossuficientemente e se ajustaram formando um sítio ativo funcional. Coerentemente, a estabilidade térmica intermediária da quimera também sugere que as metades (β/α)4 das proteínas parentais mantiveram sua termoestabilidade relativamente independente. Em conjunto estas observações implicam em razoável estabilidade e independência termodinâmica no dobramento de cada uma das metades (β/α)4, funcionando, portanto, como unidades praticamente independentes, ou seja, como domínios. Domains are stable and independent folding units that compose the protein structure (Richardson, 1981; Dootlitle, 1995; Porter e Rose, 2012). Interestingly, the application of this definition in the analysis of (β/α)8 barrel proteins reveals two domains corresponding to the N- and C-terminal halves (Porter and Rose, 2012), a perspective that contrast with the common assumption that those are single domain proteins. Based on that, assuming that the N- and C-terminal halves of the (β/α)8 barrel proteins are stable and independent, the objective of this project was to understand how the individual properties of the (β/α)4 subdomains combine and define the stability and catalytic activity of the β-glycosidases GH1, which exhibit (β/α)8 structure. The β-glycosidase bglThm from Thermotoga maritima (thermophile bacteria), bglA and bglB from Paenibacillus polymyxa (mesophile bacteria) and six chimeric proteins combining the (β/ α)4 subdomains from two of those enzymes (NbglThm-CbglB, NbglB-CbglThm, NbglThm-CbglA, NbglA-CbglThm, NbglA-CbglB e NbglB-CbglA) were used as experimental models. bglA, bglB and bglThm were produced as recombinant proteins and successfully purified. The chimera NbglA-CbglThm was the only one that was viably produced and purified. Tryptophan fluorescence and circular dichroism spectra indicated that the wild-type and the chimeric β-glycosidases were folded. NbglA-CbglThm has a secondary structure composition similar to bglA. On the other hand, access of the tryptophan residues of NbglA-CbglThm to the quencher acrylamide is comparable to bglThm. The melting temperature (Tm) and the thermal inactivation rate constant (at 47°C) of the NbglA-CbglThm are intermediary to bglA and bglThm. Hence, the chimera thermostability is a balance of the parental enzymes stabilities. The catalytic activity of NbglA-CbglThm does not depend on the pH, whereas bglA and bglThm exhibited a typical bell shaped curve. In addition, NbglA-CbglThm activity is lower than the parental enzymes, as showed the kcat for three different substrates. Considering that the active site properties of the β-glycosidases rely on the relative positioning of at least ten residues, such changes are not surprising. The Km of NbglA-CbglThm for substrates pNPβ-Gluco and pNPβ-Fuco are intermediary to bglA and bglThm. Finally, the substrate specificity of the NbglA-CbglThm is a balance of the parental enzymes specificities, because they showed clear preference for one of those substrates, whereas the chimera presented the same kcat/Km for both. Hence, the characterization of the chimera activity indicates that the (β/α)4 subdomains folded self-sufficiently and adjusted itself to form a functional active site. In agree, the chimera thermostability also indicates that the (β/α)4 subdomains kept their individual thermal-properties. These observations point to a sufficient thermodynamic stability in the folding and properties of each (β/α)4 half, implying that they were virtually self-contained like true domains. https://doi.org/10.11606/T.46.2019.tde-25112019-162943info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T20:10:12Zoai:teses.usp.br:tde-25112019-162943Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T13:18:54.723102Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.pt.fl_str_mv Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
dc.title.alternative.en.fl_str_mv Contribution of (β/α)4 subdomains to the stability and activity of β-glycosidases GH1 with (β/α)8 barrel structure
title Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
spellingShingle Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
Maira Artischeff Frutuoso
title_short Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
title_full Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
title_fullStr Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
title_full_unstemmed Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
title_sort Contribuição dos subdomínios (β/α)4 para a estabilidade e atividade de β-glicosidases GH1 com estrutura (β/α)8 barril
author Maira Artischeff Frutuoso
author_facet Maira Artischeff Frutuoso
author_role author
dc.contributor.advisor1.fl_str_mv Sandro Roberto Marana
dc.contributor.referee1.fl_str_mv Cristiane Rodrigues Guzzo Carvalho
dc.contributor.referee2.fl_str_mv Roberto Kopke Salinas
dc.contributor.referee3.fl_str_mv Ivarne Luis dos Santos Tersariol
dc.contributor.author.fl_str_mv Maira Artischeff Frutuoso
contributor_str_mv Sandro Roberto Marana
Cristiane Rodrigues Guzzo Carvalho
Roberto Kopke Salinas
Ivarne Luis dos Santos Tersariol
description Domínios são definidos como unidades de dobramento independente e estáveis que formam a estrutura das proteínas (Richardson, 1981; Dootlitle, 1995; Porter e Rose, 2012). Interessantemente quando esta definição é aplicada na análise de proteínas com dobramento (β/α)8 barril identificam-se 2 domínios, que correspondem as suas metades N- e C-terminais (Porter e Rose, 2012), contrastando com a visão que assume o (β/α)8 barril como um domínio único. Deste modo, considerando então que as metades N-terminal e C-terminal das proteínas (β/α)8 barril sejam consideravelmente estáveis e independentes, o objetivo geral desta tese foi avaliar como as propriedades individuais destes subdomínios (β/α)4 se combinam e definem tanto a estabilidade quanto a atividade catalítica das β-glicosidases GH1, que possuem estrutura (β/α)8 barril. As β-glicosidases bglA de Thermotoga marítima (uma bactéria termófila), bglA e bglB de Paenibacillus polymyxa (uma bactéria mesófila) e proteínas quiméricas originadas da combinação dos subdomínios (β/α)4 entre duas destas β-glicosidases (NbglThm-CbglB, NbglB-CbglThm, NbglThm-CbglA, NbglA-CbglThm, NbglA-CbglB e NbglB-CbglA) foram os modelos experimentais. As β-glicosidases bglA, bglB e bglThm foram produzidas como proteínas recombinantes e purificadas. Apenas NbglA-CsbglThm pode ser purificada solúvel e ativa. A fluorescência de triptofanos e o dicroísmo circular sugerem que as β-glicosidases selvagens e a quimera estão enoveladas. Além disso, NbglA-CbglThm apresenta uma composição de estrutura secundária mais próxima à bglA do que bglThm. Por outro lado, o acesso do supressor acrilamida aos triptofanos de NbglA-CbglThm é igual a bglThm e menor do que bglA. A Tm e o Kobs de inativação a 47°C de NbglA-CbglThm são intermediárias àquelas de bglA e bglThm. Portanto, a termoestabilidade da quimera é uma ponderação daquela das suas proteínas parentais. NbglA-CbglThm possui atividade enzimática independente do pH, enquanto bglA e bglThm exibem uma curva em sino. Ainda, NbglA-CbglThm mostrou menor atividade enzimática, ilustrada pela queda dos kcat para os substratos estudados. Considerando que funcionamento do sítio ativo das β-glicosidases depende do posicionamento relativo de pelo menos dez resíduos, estas mudanças na quimera não são inesperadas. NbglA-CbglThm possui Km intermediário para os substratos pNPβ- Gluco e pNPβ-Fuco em relação a bglA e bglThm. Adicionalmente, a especificidade pelo substrato de NbglA-CbglThm é uma ponderação daquela de bglA e bglThm, pois enquanto estas parentais exibiram preferência por um destes substratos, a quimera apresenta o mesmo kcat/Km para os dois. Deste modo, a caracterização da atividade enzimática sugere que as metades (β/α)4 que compõem a quimera NbglA-CbglThm provavelmente se dobraram autossuficientemente e se ajustaram formando um sítio ativo funcional. Coerentemente, a estabilidade térmica intermediária da quimera também sugere que as metades (β/α)4 das proteínas parentais mantiveram sua termoestabilidade relativamente independente. Em conjunto estas observações implicam em razoável estabilidade e independência termodinâmica no dobramento de cada uma das metades (β/α)4, funcionando, portanto, como unidades praticamente independentes, ou seja, como domínios.
publishDate 2019
dc.date.issued.fl_str_mv 2019-10-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.46.2019.tde-25112019-162943
url https://doi.org/10.11606/T.46.2019.tde-25112019-162943
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Ciências Biológicas (Bioquímica)
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794503054449442816