Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 

Detalhes bibliográficos
Autor(a) principal: Regina Estevam Alves
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.18.2015.tde-12112015-141315
Resumo: Neste trabalho exploramos o uso de diferentes técnicas de microestruturação de materiais poliméricos a laser, visando a obteção de superfícies que podem ser aplicadas tanto no desenvolvimento de dispositivos fotônicos quanto de materiais biomédicos. Primeiramente, estudamos a influência da energia de pulso e velocidade de translação sobre as microestruturas produzidas na superfície de filmes de poli(2-metóxi-5-(2-etil-hexiloxi)-1,4-fenileno vinileno) (MEH-PPV). Observamos que a rugosidade da superfície microestruturada aumentou significativamente com o aumento da energia de pulso e velocidade de translação. Além disso, determinamos o limiar de energia para remoção de material, distinguindo o intervalo de energia para a remoção do polímero daquele que causa somente alterações morfológicas. Uma vez que as condições de microestruturação com pulsos laser de femtossegundos foram determinadas, aplicamos tal abordagem para fabricar um dispositivo eletroluminescente microestruturado, sem danificar o polímero e a camada de óxido de índio-estanho, utilizada como contato. Em uma segunda vertente do trabalho, estudamos a influência da energia do pulso ultracurto sobre as propriedades físico-químicas de filmes de quitosana. Neste caso, determinamos o limiar de energia para que ocorra mudança estrutural e remoção de material polimérico. Com isso, produzimos microestruturas com características mais hidrofílicas, além de superfícies com diferentes estruturações superficiais, que foram utilizadas para investigar seu potencial no estudo da formação de biofilme de Staphylococcus aureus. Neste caso, produzimos microestruturas com dimensões de 500 μm2 e diferentes periodicidades (variando de 4 a 12 μm) na superfície de filmes de quitosana e polimetilmetacrilato (PMMA). Com essas microestruturas, observamos distintos comportamentos para a formação de biofilme; no caso do PMMA, não houve distinção de desenvolvimento; quanto às amostras de quitosana, observamos uma preferência das bactérias por superfícies mais rugosas e regiões de bordas das microestruturas. Por fim, em uma terceira vertente do trabalho, utilizamos o método de estruturação direta por interferência para fabricar microestruturas periódicas em membranas de poliuretano, usando pulsos de nanossegundos. Com esse método, produzimos microestruturas de alta qualidade na superfície de membranas de poliuretano, com diferentes periodicidades (variando de 500 nm até 5 μm). Essa microestruturação permitiu a obtenção de amostras com comportamento de molhamento anisotrópico. De maneira geral, os resultados aqui apresentados, além de demonstrar a potencialidade das técnicas de microfabricação a laser, fornecem importantes informações sobre os parâmetros ótimos para microfabricação em filmes poliméricos, visando aplicações tanto em dispositivos fotônicos e optoeletrônicos quanto em biomateriais.
id USP_c9e1ad33fb4e42ddd3de6edd8bea1fbf
oai_identifier_str oai:teses.usp.br:tde-12112015-141315
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos  Polymeric surfaces processing with nano- and femtosecond laser pulses 2015-09-08Cleber Renato MendonçaDebora Terezia BaloghDaniel Souza CorrêaAntonio Riul JúniorFábio Simões de VicenteRegina Estevam AlvesUniversidade de São PauloCiência e Engenharia de MateriaisUSPBR Ablação Ablation Implantable materials Materiais implantáveis Microestruturação Microstructuring Modificação de superfícies Polímeros Polymers Surface modification Neste trabalho exploramos o uso de diferentes técnicas de microestruturação de materiais poliméricos a laser, visando a obteção de superfícies que podem ser aplicadas tanto no desenvolvimento de dispositivos fotônicos quanto de materiais biomédicos. Primeiramente, estudamos a influência da energia de pulso e velocidade de translação sobre as microestruturas produzidas na superfície de filmes de poli(2-metóxi-5-(2-etil-hexiloxi)-1,4-fenileno vinileno) (MEH-PPV). Observamos que a rugosidade da superfície microestruturada aumentou significativamente com o aumento da energia de pulso e velocidade de translação. Além disso, determinamos o limiar de energia para remoção de material, distinguindo o intervalo de energia para a remoção do polímero daquele que causa somente alterações morfológicas. Uma vez que as condições de microestruturação com pulsos laser de femtossegundos foram determinadas, aplicamos tal abordagem para fabricar um dispositivo eletroluminescente microestruturado, sem danificar o polímero e a camada de óxido de índio-estanho, utilizada como contato. Em uma segunda vertente do trabalho, estudamos a influência da energia do pulso ultracurto sobre as propriedades físico-químicas de filmes de quitosana. Neste caso, determinamos o limiar de energia para que ocorra mudança estrutural e remoção de material polimérico. Com isso, produzimos microestruturas com características mais hidrofílicas, além de superfícies com diferentes estruturações superficiais, que foram utilizadas para investigar seu potencial no estudo da formação de biofilme de Staphylococcus aureus. Neste caso, produzimos microestruturas com dimensões de 500 μm2 e diferentes periodicidades (variando de 4 a 12 μm) na superfície de filmes de quitosana e polimetilmetacrilato (PMMA). Com essas microestruturas, observamos distintos comportamentos para a formação de biofilme; no caso do PMMA, não houve distinção de desenvolvimento; quanto às amostras de quitosana, observamos uma preferência das bactérias por superfícies mais rugosas e regiões de bordas das microestruturas. Por fim, em uma terceira vertente do trabalho, utilizamos o método de estruturação direta por interferência para fabricar microestruturas periódicas em membranas de poliuretano, usando pulsos de nanossegundos. Com esse método, produzimos microestruturas de alta qualidade na superfície de membranas de poliuretano, com diferentes periodicidades (variando de 500 nm até 5 μm). Essa microestruturação permitiu a obtenção de amostras com comportamento de molhamento anisotrópico. De maneira geral, os resultados aqui apresentados, além de demonstrar a potencialidade das técnicas de microfabricação a laser, fornecem importantes informações sobre os parâmetros ótimos para microfabricação em filmes poliméricos, visando aplicações tanto em dispositivos fotônicos e optoeletrônicos quanto em biomateriais. In this work we explored the use of laser micromachining methods to structure polymeric materials, aiming to obtain surfaces that can be applied in the development of photonic devices as well as biomedical materials. Firstly, we investigated the influence of pulse energy and translation speed on microstructures fabricated on the surface of poly[2-methoxy-5- (2\'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) films. We observed that the roughness of the microstructured surface significantly increased with the pulse energy and translation speed. Besides, we determined the energy threshold for material removal, distinguishing the energy range for polymer removal from that causing only structural changes. Once the proper laser micromachining conditions were determined, we were able to apply such approach to fabricate a functional microstructured electroluminescent device, without disrupting the indium tin oxide layer used as the contact for the devices. In the second part of the work, we studied the influence of femtosecond pulses on the structuring process of chitosan films. In this case, we determined the threshold energy that leads to structural change and material removal. We have been able to produced microstructures with hydrophilic characteristics, in addition to surfaces with different structuring that were used to study the formation of Staphylococcus aureus biofilm. For such purpose we produced microstructured areas of 500 μm2 and different periods (ranging from 4 to 12 μm) on the surface of chitosan and poly(methyl methacrylate)(PMMA) films. With these microstructures we observed different behaviors in the biofilm formation; in the case of PMMA, there was not distinction of development; concerning the chitosan samples we observed preferential bacterial growth on the rougher regions of the microstructures. Lastly, in a third part of the study, we used the method of direct laser interference patterning to fabricate periodic microstructures on polyurethane membranes, using nanosecond pulses. With this method, we produced high quality microstructures on the surface of polyurethane with different periodicity (from 500 nm to 5.0 μm). This approach allowed obtaining samples with anisotropic wetting behavior. In general, the results presented here, in addition to demonstrating the potential of the laser micromachining methods to structure polymeric samples, provides important information about the optimal parameters to micromachining of polymer films, aiming at applications in photonic devices, optoelectronics and biomaterials. https://doi.org/10.11606/T.18.2015.tde-12112015-141315info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:48:54Zoai:teses.usp.br:tde-12112015-141315Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T12:34:10.532087Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.pt.fl_str_mv Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
dc.title.alternative.en.fl_str_mv Polymeric surfaces processing with nano- and femtosecond laser pulses
title Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
spellingShingle Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
Regina Estevam Alves
title_short Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
title_full Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
title_fullStr Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
title_full_unstemmed Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
title_sort Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos 
author Regina Estevam Alves
author_facet Regina Estevam Alves
author_role author
dc.contributor.advisor1.fl_str_mv Cleber Renato Mendonça
dc.contributor.referee1.fl_str_mv Debora Terezia Balogh
dc.contributor.referee2.fl_str_mv Daniel Souza Corrêa
dc.contributor.referee3.fl_str_mv Antonio Riul Júnior
dc.contributor.referee4.fl_str_mv Fábio Simões de Vicente
dc.contributor.author.fl_str_mv Regina Estevam Alves
contributor_str_mv Cleber Renato Mendonça
Debora Terezia Balogh
Daniel Souza Corrêa
Antonio Riul Júnior
Fábio Simões de Vicente
description Neste trabalho exploramos o uso de diferentes técnicas de microestruturação de materiais poliméricos a laser, visando a obteção de superfícies que podem ser aplicadas tanto no desenvolvimento de dispositivos fotônicos quanto de materiais biomédicos. Primeiramente, estudamos a influência da energia de pulso e velocidade de translação sobre as microestruturas produzidas na superfície de filmes de poli(2-metóxi-5-(2-etil-hexiloxi)-1,4-fenileno vinileno) (MEH-PPV). Observamos que a rugosidade da superfície microestruturada aumentou significativamente com o aumento da energia de pulso e velocidade de translação. Além disso, determinamos o limiar de energia para remoção de material, distinguindo o intervalo de energia para a remoção do polímero daquele que causa somente alterações morfológicas. Uma vez que as condições de microestruturação com pulsos laser de femtossegundos foram determinadas, aplicamos tal abordagem para fabricar um dispositivo eletroluminescente microestruturado, sem danificar o polímero e a camada de óxido de índio-estanho, utilizada como contato. Em uma segunda vertente do trabalho, estudamos a influência da energia do pulso ultracurto sobre as propriedades físico-químicas de filmes de quitosana. Neste caso, determinamos o limiar de energia para que ocorra mudança estrutural e remoção de material polimérico. Com isso, produzimos microestruturas com características mais hidrofílicas, além de superfícies com diferentes estruturações superficiais, que foram utilizadas para investigar seu potencial no estudo da formação de biofilme de Staphylococcus aureus. Neste caso, produzimos microestruturas com dimensões de 500 μm2 e diferentes periodicidades (variando de 4 a 12 μm) na superfície de filmes de quitosana e polimetilmetacrilato (PMMA). Com essas microestruturas, observamos distintos comportamentos para a formação de biofilme; no caso do PMMA, não houve distinção de desenvolvimento; quanto às amostras de quitosana, observamos uma preferência das bactérias por superfícies mais rugosas e regiões de bordas das microestruturas. Por fim, em uma terceira vertente do trabalho, utilizamos o método de estruturação direta por interferência para fabricar microestruturas periódicas em membranas de poliuretano, usando pulsos de nanossegundos. Com esse método, produzimos microestruturas de alta qualidade na superfície de membranas de poliuretano, com diferentes periodicidades (variando de 500 nm até 5 μm). Essa microestruturação permitiu a obtenção de amostras com comportamento de molhamento anisotrópico. De maneira geral, os resultados aqui apresentados, além de demonstrar a potencialidade das técnicas de microfabricação a laser, fornecem importantes informações sobre os parâmetros ótimos para microfabricação em filmes poliméricos, visando aplicações tanto em dispositivos fotônicos e optoeletrônicos quanto em biomateriais.
publishDate 2015
dc.date.issued.fl_str_mv 2015-09-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.18.2015.tde-12112015-141315
url https://doi.org/10.11606/T.18.2015.tde-12112015-141315
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Ciência e Engenharia de Materiais
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794502690971058176