Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção

Detalhes bibliográficos
Autor(a) principal: Salomón, Yamil Lucas de Oliveira
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/24906
Resumo: The potential of pecan pericarp (Carya illinoensis), Pacara Earpod tree seed residues (Enterolobium contortisilquum), and ironwood seed residues (Caesalpinia leiostachya) were evaluated for the removal of crystal violet (CV) and basic fuchsin (BF) dyes through continuous and batch adsorption system. The biosorbents were called pecan pericarp powder (PPP), pacara ear pod seed residues (PETS) and ironwood seed waste (IWS). The PPP biosorbent was used to remove the CV dye and the PETS and IWS biosorbents were tested to remove BF. The morphological characteristics of the materials present rough surfaces and different sizes. Also, the biosorbents showed functional groups associated with cellulose, lignin, and hemicellulose. The ideal dosage was 0.05 g / 100 mL in PPP and 1 g L-¹ for PETS and IWS. The best pH was set at 8.5 for CV biosorption in PPP, and pH 9.0 for PETS and IWS biosorption in BF. The kinetic profile was better adjusted for the general order model, and the balance was reached quickly in the first 5 min for the different initial concentrations of the CV. In PETS and IWS kinetics, the pseudo-second order model was considered more appropriate to describe BF biosorption. The PPP balance curves in CV were best described by the Langmuir model, with a maximum biosorption capacity of 642 mg g-¹, reaching 328 K. The Langmuir and Tóth models were the best to represent the balance curves for BF in PETS and IWS, respectively. The isotherm experiments showed maximum capacities of 166.858 mg g-¹ (PETS) and 110.317 mg g-¹ (IWS), with an initial concentration of 500 mg L-¹ at 328 K. The thermodynamics was favorable and endothermic for PPP and for the biosorbents PETS and IWS the process was spontaneous, endothermic and favorable. In the simulated effluent experiment, color removals were 94.1% with PPP, 66% with PETS, and 54% with IWS. Finally, the materials were tested in a fixed bed. For the PPP biosorbent, the column operated for 52.5 hours at a height of 25 cm, and the models suitable for describing the dynamic curves were the models of Thomas, Bohart-Adams, and Yoon-Nelson. The PETS and IWS biosorbents were also used in a fixed bed, reaching break times of 710 and 415 minutes, with a biosorption capacity of 124.5 mg g-¹ and 76.5 mg g-¹, respectively. Therefore, materials plant residues can be used as effective biosorbents for the treatment of aqueous effluents containing the dyes CV and BF in a continuous and batch system.
id UFSM_cef6cae98ca42ba880f893436087badc
oai_identifier_str oai:repositorio.ufsm.br:1/24906
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorçãoPotential of low-cost biosorbents in the removal of crystal violet and basic fuchsin dyes in a continuous and discontinuous adsorption systemBiosorventeVioleta cristalFucsina básicaAdsorçãoEfluente simuladoLeito fixoBiosorbentCrystal violetBasic fuchsinAdsorptionSimulated effluentFixed bed operationCNPQ::ENGENHARIASThe potential of pecan pericarp (Carya illinoensis), Pacara Earpod tree seed residues (Enterolobium contortisilquum), and ironwood seed residues (Caesalpinia leiostachya) were evaluated for the removal of crystal violet (CV) and basic fuchsin (BF) dyes through continuous and batch adsorption system. The biosorbents were called pecan pericarp powder (PPP), pacara ear pod seed residues (PETS) and ironwood seed waste (IWS). The PPP biosorbent was used to remove the CV dye and the PETS and IWS biosorbents were tested to remove BF. The morphological characteristics of the materials present rough surfaces and different sizes. Also, the biosorbents showed functional groups associated with cellulose, lignin, and hemicellulose. The ideal dosage was 0.05 g / 100 mL in PPP and 1 g L-¹ for PETS and IWS. The best pH was set at 8.5 for CV biosorption in PPP, and pH 9.0 for PETS and IWS biosorption in BF. The kinetic profile was better adjusted for the general order model, and the balance was reached quickly in the first 5 min for the different initial concentrations of the CV. In PETS and IWS kinetics, the pseudo-second order model was considered more appropriate to describe BF biosorption. The PPP balance curves in CV were best described by the Langmuir model, with a maximum biosorption capacity of 642 mg g-¹, reaching 328 K. The Langmuir and Tóth models were the best to represent the balance curves for BF in PETS and IWS, respectively. The isotherm experiments showed maximum capacities of 166.858 mg g-¹ (PETS) and 110.317 mg g-¹ (IWS), with an initial concentration of 500 mg L-¹ at 328 K. The thermodynamics was favorable and endothermic for PPP and for the biosorbents PETS and IWS the process was spontaneous, endothermic and favorable. In the simulated effluent experiment, color removals were 94.1% with PPP, 66% with PETS, and 54% with IWS. Finally, the materials were tested in a fixed bed. For the PPP biosorbent, the column operated for 52.5 hours at a height of 25 cm, and the models suitable for describing the dynamic curves were the models of Thomas, Bohart-Adams, and Yoon-Nelson. The PETS and IWS biosorbents were also used in a fixed bed, reaching break times of 710 and 415 minutes, with a biosorption capacity of 124.5 mg g-¹ and 76.5 mg g-¹, respectively. Therefore, materials plant residues can be used as effective biosorbents for the treatment of aqueous effluents containing the dyes CV and BF in a continuous and batch system.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO potencial do pericarpo da noz-pecã (Carya illinoensis), os resíduos da semente de orelha de macaco (Enterolobium contortisilquum) e resíduos da semente de pau ferro (Caesalpinia leiostachya) foram avaliados para a remoção dos corantes violeta cristal (VC) e fucsina básica (FB) através do sistema contínuo e descontínuo de adsorção. Os biosorventes foram denominados de pó do pericarpo da noz-pecã (PPP), resíduos da semente de orelha de macaco (RSOM) e resíduos da semente de pau ferro (RSPF). O biossorvente PPP foi utilizado na remoção do corante VC e os biossorventes RSOM e RSPF testados na remoção de FB. As características morfológicas dos materiais apresentam superfícies rugosas e de diferentes tamanhos. Além disso, os biossorventes apresentaram grupos funcionais associados à celulose, lignina e hemicelulose. A dosagem ideal foi de 0,05 g/100 mL em PPP e 1 g L-¹ para o RSOM e RSPF. O melhor pH foi definido em 8,5 para a biossorção do VC no PPP, e pH de 9,0 para a biossorção de RSOM e RSPF em FB. O perfil cinético foi melhor ajustado para o modelo de ordem geral, sendo o equilíbrio alcançado rapidamente já nos primeiros 5 min para as diferentes concentrações iniciais do VC. Na cinética de RSOM e RSPF o modelo de pseudo-segunda ordem foi considerado mais adequado para descrever a biossorção da FB. As curvas de equilíbrio de PPP em VC foram melhor descritas pelo modelo de Langmuir, com capacidade máxima de biossorção de 642 mg g-¹, sendo alcançada em 328 K. Os modelos de Langmuir e Tóth foram os melhores para representar as curvas de equilíbrio para a FB no RSOM e RSPF, respectivamente. Os experimentos de isoterma apresentaram capacidades máximas de 166,858 mg g-¹ (RSOM) e 110,317 mg g-¹ (RSPF), com concentração inicial de 500 mg L-¹ a 328 K. A termodinâmica foi favorável e endotérmica para PPP e para os biossorventes RSOM e RSPF o processo foi espontâneo, endotérmico e favorável. No experimento de efluente simulado as remoções de cor foram de 94,1% com PPP, 66% com RSOM e 54% com RSPF. Por fim, os materiais foram testados em leito fixo. Para o biossorvente PPP, a coluna operou durante 52,5 horas com altura de 25 cm, e os modelos adequados para descrever as curvas dinâmicas foram os modelos de Thomas, Bohart-Adams e Yoon-Nelson. Os biossorventes RSOM e RSPF também foram utilizados em leito fixo, atingindo tempos de ruptura de 710 e 415 minutos, com capacidade de biossorção de 124,5 mg g-¹ e 76,5 mg g-¹, respectivamente. Portanto, os materiais provenientes de resíduos vegetais podem ser utilizados como biossorventes eficazes para o tratamento de efluentes aquosos contendo os corantes VC e FB em sistema contínuo e descontínuo.Universidade Federal de Santa MariaBrasilEngenharia AmbientalUFSMPrograma de Pós-Graduação em Engenharia AmbientalCentro de TecnologiaPiccilli, Daniel Gustavo Allasiahttp://lattes.cnpq.br/3858010328968944Georgin, JordanaMallmann, Evandro StoffelsOliveira, Jivago Schumacher deSalomón, Yamil Lucas de Oliveira2022-06-20T18:48:10Z2022-06-20T18:48:10Z2020-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/24906porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-23T12:42:18Zoai:repositorio.ufsm.br:1/24906Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-23T12:42:18Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
Potential of low-cost biosorbents in the removal of crystal violet and basic fuchsin dyes in a continuous and discontinuous adsorption system
title Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
spellingShingle Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
Salomón, Yamil Lucas de Oliveira
Biosorvente
Violeta cristal
Fucsina básica
Adsorção
Efluente simulado
Leito fixo
Biosorbent
Crystal violet
Basic fuchsin
Adsorption
Simulated effluent
Fixed bed operation
CNPQ::ENGENHARIAS
title_short Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
title_full Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
title_fullStr Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
title_full_unstemmed Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
title_sort Potencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorção
author Salomón, Yamil Lucas de Oliveira
author_facet Salomón, Yamil Lucas de Oliveira
author_role author
dc.contributor.none.fl_str_mv Piccilli, Daniel Gustavo Allasia
http://lattes.cnpq.br/3858010328968944
Georgin, Jordana
Mallmann, Evandro Stoffels
Oliveira, Jivago Schumacher de
dc.contributor.author.fl_str_mv Salomón, Yamil Lucas de Oliveira
dc.subject.por.fl_str_mv Biosorvente
Violeta cristal
Fucsina básica
Adsorção
Efluente simulado
Leito fixo
Biosorbent
Crystal violet
Basic fuchsin
Adsorption
Simulated effluent
Fixed bed operation
CNPQ::ENGENHARIAS
topic Biosorvente
Violeta cristal
Fucsina básica
Adsorção
Efluente simulado
Leito fixo
Biosorbent
Crystal violet
Basic fuchsin
Adsorption
Simulated effluent
Fixed bed operation
CNPQ::ENGENHARIAS
description The potential of pecan pericarp (Carya illinoensis), Pacara Earpod tree seed residues (Enterolobium contortisilquum), and ironwood seed residues (Caesalpinia leiostachya) were evaluated for the removal of crystal violet (CV) and basic fuchsin (BF) dyes through continuous and batch adsorption system. The biosorbents were called pecan pericarp powder (PPP), pacara ear pod seed residues (PETS) and ironwood seed waste (IWS). The PPP biosorbent was used to remove the CV dye and the PETS and IWS biosorbents were tested to remove BF. The morphological characteristics of the materials present rough surfaces and different sizes. Also, the biosorbents showed functional groups associated with cellulose, lignin, and hemicellulose. The ideal dosage was 0.05 g / 100 mL in PPP and 1 g L-¹ for PETS and IWS. The best pH was set at 8.5 for CV biosorption in PPP, and pH 9.0 for PETS and IWS biosorption in BF. The kinetic profile was better adjusted for the general order model, and the balance was reached quickly in the first 5 min for the different initial concentrations of the CV. In PETS and IWS kinetics, the pseudo-second order model was considered more appropriate to describe BF biosorption. The PPP balance curves in CV were best described by the Langmuir model, with a maximum biosorption capacity of 642 mg g-¹, reaching 328 K. The Langmuir and Tóth models were the best to represent the balance curves for BF in PETS and IWS, respectively. The isotherm experiments showed maximum capacities of 166.858 mg g-¹ (PETS) and 110.317 mg g-¹ (IWS), with an initial concentration of 500 mg L-¹ at 328 K. The thermodynamics was favorable and endothermic for PPP and for the biosorbents PETS and IWS the process was spontaneous, endothermic and favorable. In the simulated effluent experiment, color removals were 94.1% with PPP, 66% with PETS, and 54% with IWS. Finally, the materials were tested in a fixed bed. For the PPP biosorbent, the column operated for 52.5 hours at a height of 25 cm, and the models suitable for describing the dynamic curves were the models of Thomas, Bohart-Adams, and Yoon-Nelson. The PETS and IWS biosorbents were also used in a fixed bed, reaching break times of 710 and 415 minutes, with a biosorption capacity of 124.5 mg g-¹ and 76.5 mg g-¹, respectively. Therefore, materials plant residues can be used as effective biosorbents for the treatment of aqueous effluents containing the dyes CV and BF in a continuous and batch system.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-28
2022-06-20T18:48:10Z
2022-06-20T18:48:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/24906
url http://repositorio.ufsm.br/handle/1/24906
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Ambiental
UFSM
Programa de Pós-Graduação em Engenharia Ambiental
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Ambiental
UFSM
Programa de Pós-Graduação em Engenharia Ambiental
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1805922098047090688