Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte

Detalhes bibliográficos
Autor(a) principal: Nunes, Camila Fontoura
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/00130000059bb
Texto Completo: http://repositorio.ufsm.br/handle/1/24646
Resumo: Taking into account that the transport of grains can be carried out over long distances and that the mass of grains during transport, many times, has high contents of water, there may be risks of heat and moisture transfer and heating of the mass of grains, proving quanti-qualitative losses. Thus, this study aimed to validate a probe system for monitoring temperature, relative humidity and diffusion of the concentration of carbon dioxide in the mass of corn grains, in real time, during transport, as a function of different initial water contents (12, 16 and 25% w.b.), to detect early dry matter losses and predict possible changes in the physical quality of the grains. Portable equipment was developed to monitor the grain mass during road transport. The equipment consists of an Arduino Mega 2560 microcontroller as a control core. The system's hardware included three digital sensors to detect air temperature and relative humidity, a non-destructive infrared sensor to detect CO2 concentration, real-time clock modules and a micro-SD card. The output data from the digital sensor, infrared sensor and modules were connected to the I/O communication terminals of the microcontroller which were responsible for physical communication, component integration and data calculation. The temperature and relative humidity sensors were fixed at three ends of a threaded bar and the CO2 sensor was fixed in the central part. The real-time clock module and the micro-SD card were packaged in a plastic back box. The software used on the Arduino board was programmed based on the C++ programming language, with most of the libraries provided by the platform. The Arduino IDE (Integrated Development Environment) was used to develop the embedded firmware for the Atmega 2560 microcontrollers. To monitor the mass of corn grains, simulating a transport condition, a box was experimentally made with plywood material. in the dimensions of (0.2 x 0.2 x 1.8 m). The probe was inserted into the grain mass profile to assess the detection level of temperature, relative air humidity and carbon dioxide (CO2) in the grain mass. To define the hole diameter, the temperature, relative humidity and carbon dioxide sensors were placed in probes with different hole diameters (7.5, 7.0 and 6.5 mm), drilling height (470, 235 and 117.5 mm) and grain moistures contents (12.16 and 25%). The holes were made to allow the entry of air and facilitate the response of the sensors. In order to choose the diameter and drilling height of the probe that best fits, one of the requirements was that they meet the two analyzed moistures contents. The readings on the sensors were carried out until the values of temperature, relative humidity and carbon dioxide concentration stabilized. With the validation of the equipment, the definitive probe was made with a polyvinyl chloride tube with a diameter of 50 mm and a height of 1500 mm, with three perforated regions (upper, central and lower). A metallic grain sampler tube was developed to attach the probe. To evaluate the quality of the grains, the hygroscopic equilibrium moisture was obtained from the monitored intergranular air temperature and humidity; the concentration of carbon dioxide (CO2) to indirectly determine the dry matter consumption of the grains, the electrical conductivity test and the germination of the grains were carried out. To early predict physical changes in grain mass, Machine Learning and linear regression algorithms were used. The models tested were: artificial neural networks (ANN), linear regression (LR), M5P algorithm, reduced error pruning tree (REPTree), random forest (RF), and support vector machine (SVM). Among the results it was observed that the elevation of the parameters temperature, relative humidity of the air accelerated the metabolic activity of the grains and intensified the respiration of the grain mass, causing consumption of dry matter and alterations in the physical quality of the corn grains. The monitoring system with sensors for real-time measurement of temperature, relative humidity and concentration of carbon dioxide (CO2) in the mass of corn grains obtained satisfactory results, in which the probe was validated with a hole diameter of 6.5 mm and drilling height of 225 mm. The real-time monitoring of the variables indirectly and precociously determined the changes in the physical quality of the grains during transport, confirmed by the physical analyzes of electrical conductivity and germination. In the 2-hour period, the monitored variables indirectly indicated the physical changes that occurred in the grain mass. The condition of 16% of water content of the corn and the position of superior of the profile of the mass of grains suffered the biggest physical alterations of quality, mainly in the loss of dry matter, in function of the high equilibrium moisture content and respiration of the mass of grains. Real-time monitoring of corn grain mass and the application of Machine Learning algorithms predicted the quantitative and qualitative losses of corn grains in transport. All Machine Learning models, with the exception of the support vector machine algorithm, obtained good results, however, the multiple linear regression reached the best fits, being indicated for the prediction of grain losses in corn transport.
id UFSM_d5a5226b3e0b6284a94a0da53580790e
oai_identifier_str oai:repositorio.ufsm.br:1/24646
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporteEarly detection and prediction of dry matter loss and quality of corn grains in real time during transportBiosensoresFatores bióticosInteligência artificialMonitoramento de grãosPós-colheitaTransferência de grãosBiosensorsBiotic factorsArtificial intelligenceGrain monitoringPost-harvestGrain transferCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLATaking into account that the transport of grains can be carried out over long distances and that the mass of grains during transport, many times, has high contents of water, there may be risks of heat and moisture transfer and heating of the mass of grains, proving quanti-qualitative losses. Thus, this study aimed to validate a probe system for monitoring temperature, relative humidity and diffusion of the concentration of carbon dioxide in the mass of corn grains, in real time, during transport, as a function of different initial water contents (12, 16 and 25% w.b.), to detect early dry matter losses and predict possible changes in the physical quality of the grains. Portable equipment was developed to monitor the grain mass during road transport. The equipment consists of an Arduino Mega 2560 microcontroller as a control core. The system's hardware included three digital sensors to detect air temperature and relative humidity, a non-destructive infrared sensor to detect CO2 concentration, real-time clock modules and a micro-SD card. The output data from the digital sensor, infrared sensor and modules were connected to the I/O communication terminals of the microcontroller which were responsible for physical communication, component integration and data calculation. The temperature and relative humidity sensors were fixed at three ends of a threaded bar and the CO2 sensor was fixed in the central part. The real-time clock module and the micro-SD card were packaged in a plastic back box. The software used on the Arduino board was programmed based on the C++ programming language, with most of the libraries provided by the platform. The Arduino IDE (Integrated Development Environment) was used to develop the embedded firmware for the Atmega 2560 microcontrollers. To monitor the mass of corn grains, simulating a transport condition, a box was experimentally made with plywood material. in the dimensions of (0.2 x 0.2 x 1.8 m). The probe was inserted into the grain mass profile to assess the detection level of temperature, relative air humidity and carbon dioxide (CO2) in the grain mass. To define the hole diameter, the temperature, relative humidity and carbon dioxide sensors were placed in probes with different hole diameters (7.5, 7.0 and 6.5 mm), drilling height (470, 235 and 117.5 mm) and grain moistures contents (12.16 and 25%). The holes were made to allow the entry of air and facilitate the response of the sensors. In order to choose the diameter and drilling height of the probe that best fits, one of the requirements was that they meet the two analyzed moistures contents. The readings on the sensors were carried out until the values of temperature, relative humidity and carbon dioxide concentration stabilized. With the validation of the equipment, the definitive probe was made with a polyvinyl chloride tube with a diameter of 50 mm and a height of 1500 mm, with three perforated regions (upper, central and lower). A metallic grain sampler tube was developed to attach the probe. To evaluate the quality of the grains, the hygroscopic equilibrium moisture was obtained from the monitored intergranular air temperature and humidity; the concentration of carbon dioxide (CO2) to indirectly determine the dry matter consumption of the grains, the electrical conductivity test and the germination of the grains were carried out. To early predict physical changes in grain mass, Machine Learning and linear regression algorithms were used. The models tested were: artificial neural networks (ANN), linear regression (LR), M5P algorithm, reduced error pruning tree (REPTree), random forest (RF), and support vector machine (SVM). Among the results it was observed that the elevation of the parameters temperature, relative humidity of the air accelerated the metabolic activity of the grains and intensified the respiration of the grain mass, causing consumption of dry matter and alterations in the physical quality of the corn grains. The monitoring system with sensors for real-time measurement of temperature, relative humidity and concentration of carbon dioxide (CO2) in the mass of corn grains obtained satisfactory results, in which the probe was validated with a hole diameter of 6.5 mm and drilling height of 225 mm. The real-time monitoring of the variables indirectly and precociously determined the changes in the physical quality of the grains during transport, confirmed by the physical analyzes of electrical conductivity and germination. In the 2-hour period, the monitored variables indirectly indicated the physical changes that occurred in the grain mass. The condition of 16% of water content of the corn and the position of superior of the profile of the mass of grains suffered the biggest physical alterations of quality, mainly in the loss of dry matter, in function of the high equilibrium moisture content and respiration of the mass of grains. Real-time monitoring of corn grain mass and the application of Machine Learning algorithms predicted the quantitative and qualitative losses of corn grains in transport. All Machine Learning models, with the exception of the support vector machine algorithm, obtained good results, however, the multiple linear regression reached the best fits, being indicated for the prediction of grain losses in corn transport.Levando em consideração que o transporte de grãos pode ser realizado por longas distâncias e que a massa de grãos durante o transporte, muitas vezes, constitui-se com altos teores de água, poderá haver riscos de transferência de calor e umidade e aquecimento da massa de grãos, provacando perdas quanti-qualitaivas. Assim, este estudo teve como objetivo validar um sistema de sonda para monitoramento de temperatura, umidade relativa e difusãoa da concentração de dióxido de carbono na massa de grãos de milho, em tempo real, durante o transporte, em função de diferentes teores de água iniciais (12, 16 e 25% b.u.), para detectar precocemente perdas de matéria seca e predizer possíveis alterações na qualidade física dos grãos. Para o monitoramento da massa de grãos durante o transporte rodoviário foi desenvolvido um equipamento portátil. O equipamento constitui-se em um microcontrolador Arduino Mega 2560 como núcleo de controle. O hardware do sistema incluiu três sensores digitais para detectar a temperatura e umidade relativa do ar, um sensor infravermelho não destrutivo para detectar a concentração de CO2, módulos de relógio em tempo real e um cartão micro-SD. Os dados de saída do sensor digital, sensor infravermelhos e módulos foram conectados aos terminais de comunicação de I / O do microcontrolador que foram responsáveis pela comunicação física, integração de componentes e cálculo de dados. Os sensores de temperatura e umidade relativa foram fixados em três extremidades de uma barra roscada e o sensor de CO2 foi fixado na parte central. O módulo de relógio em tempo real e o cartão micro-SD foram acondicionados em uma caixa plástica patola. O software utilizado na placa Arduino foi programado com base na linguagem de programação C++, sendo a maioria das bibliotecas fornecida pela plataforma. O IDE (Integrated Development Environment) do Arduino foi usado para desenvolver o firmware embarcados para os microcontroladores Atmega 2560. Para o monitoramento da massa de grãos de milho, simulando-se uma condição de transporte, fez-se experimetalmente uma caixa com material de compensado nas dimensões de (0,2 x 0,2 x 1,8 m). No perfil da massa de grãos foi inserida a sonda para avaliar o nível de detecção de temperatura, umidade relativa do ar e dióxido de carbono (CO2) na massa de grãos. Para a definição do diâmetro de furo, os sensores de temperatura, umidade relativa e dióxido de carbono foram acondicionados em sondas com os diferentes diâmetros de furos (7,5, 7,0 e 6,5 mm), altura de perfuração (470, 235 e 117,5 mm) e teores de água dos grãos (12,16 e 25%). Os furos foram confeccionados para permitir a entrada de ar e facilitar a resposta dos sensores. Para a escolha do diâmetro e altura de perfuração da sonda que melhor se adeque, um dos requisitos foi que os mesmos atendam os três teores de água analisados. As leituras nos sensores foram realizadas até os valores de temperatura, umidade relativa e concentração de dióxido de carbono se estabilizar. Com a validação do equipamento, confeccionou-se a sonda definitiva com um tubo de cloreto de polivinila de diâmetro de 50 mm e uma altura de 1500 mm, com três regiões perfuradas (superior, central e inferior). Um tubo amostrador de grãos metálicos foi desenvolvido para acoplar a sonda. Para avaliação da qualidade dos grãos obteve-se a umidade de equilíbrio higroscópico a partir da temperatura e umidade do ar intergranular monitoradas; a concentração de dióxido de carbono (CO2) para determinação de forma indireta o consumo de matéria seca dos grãos, realizou-se o teste de condutividade elétrica e germinação dos grãos. Para predizer precocemente as alterações físicas da massa de grãos utilizaram-se algoritmos Machine Learning e regressão linear. Os modelos testados foram: redes neurais artificiais (RNA), regressão linear (LR), algoritmo M5P, árvore de poda com erro reduzido (REPTree), floresta aleatória (RF), máquina de vetor suporte (SVM). Entre os resultados observou-se que a elevação dos parâmetros temperatura, umidade relativa do ar acelerou a atividade metabólica dos grãos e intensificou a respiração da massa de grãos, provocando consumo de matéria seca e alterações na qualidade física dos grãos de milho. O sistema de monitoramento com sensores para medição em tempo real da temperatura, umidade relativa e concentração de dióxido de carbono (CO2) na massa de grãos de milho obteve resultados satisfatórios, as quais a sonda foi validada com diâmetro de furo 6,5 mm e altura de perfuração de 225 mm. O monitoramento em tempo real das variáveis determinou de forma indireta e precocemente as alterações de qualidade física dos grãos ao longo do transporte, confirmadas pelas análises físicas de condutividade elétrica e germinação. No período de 2 horas as variáveis monitoradas indicaram indiretamente as alterações físicas que ocorreram na massa de grãos. A condição de 16% de teor de água do milho e a posição de superior do perfil da massa de grãos sofreram as maiores alterações física de qualidade, principalmente quanto à perda de matéria seca, em função da elevada umidade de equilíbrio higroscópico e respiração da massa de grãos. O monitoramento da massa de grãos de milho em tempo real e a aplicação de algoritmos de Machine Learning predisseram as perdas quantitativas e qualitativas de grãos de milho no transporte. Todos os modelos de Machine Learning, com exceção do algoritmo máquina de vetor suporte obtiveram bons resultados, entretanto, a regressão linear múltipla alcançou os melhores ajustes, sendo indicado para a predição de perdas de grãos no transporte de milho.Universidade Federal de Santa MariaBrasilEngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCentro de Ciências RuraisCoradi, Paulo Carterihttp://lattes.cnpq.br/5926614370728576Elias, Moacir CardosoCarvalho, Ivan RicardoNunes, Camila Fontoura2022-06-07T15:13:11Z2022-06-07T15:13:11Z2022-03-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/24646ark:/26339/00130000059bbporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-07T15:13:12Zoai:repositorio.ufsm.br:1/24646Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-07T15:13:12Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
Early detection and prediction of dry matter loss and quality of corn grains in real time during transport
title Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
spellingShingle Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
Nunes, Camila Fontoura
Biosensores
Fatores bióticos
Inteligência artificial
Monitoramento de grãos
Pós-colheita
Transferência de grãos
Biosensors
Biotic factors
Artificial intelligence
Grain monitoring
Post-harvest
Grain transfer
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
title_full Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
title_fullStr Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
title_full_unstemmed Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
title_sort Detecção precoce e predição da perda de matéria seca e qualidade de grãos de milho em tempo real durante o transporte
author Nunes, Camila Fontoura
author_facet Nunes, Camila Fontoura
author_role author
dc.contributor.none.fl_str_mv Coradi, Paulo Carteri
http://lattes.cnpq.br/5926614370728576
Elias, Moacir Cardoso
Carvalho, Ivan Ricardo
dc.contributor.author.fl_str_mv Nunes, Camila Fontoura
dc.subject.por.fl_str_mv Biosensores
Fatores bióticos
Inteligência artificial
Monitoramento de grãos
Pós-colheita
Transferência de grãos
Biosensors
Biotic factors
Artificial intelligence
Grain monitoring
Post-harvest
Grain transfer
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
topic Biosensores
Fatores bióticos
Inteligência artificial
Monitoramento de grãos
Pós-colheita
Transferência de grãos
Biosensors
Biotic factors
Artificial intelligence
Grain monitoring
Post-harvest
Grain transfer
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Taking into account that the transport of grains can be carried out over long distances and that the mass of grains during transport, many times, has high contents of water, there may be risks of heat and moisture transfer and heating of the mass of grains, proving quanti-qualitative losses. Thus, this study aimed to validate a probe system for monitoring temperature, relative humidity and diffusion of the concentration of carbon dioxide in the mass of corn grains, in real time, during transport, as a function of different initial water contents (12, 16 and 25% w.b.), to detect early dry matter losses and predict possible changes in the physical quality of the grains. Portable equipment was developed to monitor the grain mass during road transport. The equipment consists of an Arduino Mega 2560 microcontroller as a control core. The system's hardware included three digital sensors to detect air temperature and relative humidity, a non-destructive infrared sensor to detect CO2 concentration, real-time clock modules and a micro-SD card. The output data from the digital sensor, infrared sensor and modules were connected to the I/O communication terminals of the microcontroller which were responsible for physical communication, component integration and data calculation. The temperature and relative humidity sensors were fixed at three ends of a threaded bar and the CO2 sensor was fixed in the central part. The real-time clock module and the micro-SD card were packaged in a plastic back box. The software used on the Arduino board was programmed based on the C++ programming language, with most of the libraries provided by the platform. The Arduino IDE (Integrated Development Environment) was used to develop the embedded firmware for the Atmega 2560 microcontrollers. To monitor the mass of corn grains, simulating a transport condition, a box was experimentally made with plywood material. in the dimensions of (0.2 x 0.2 x 1.8 m). The probe was inserted into the grain mass profile to assess the detection level of temperature, relative air humidity and carbon dioxide (CO2) in the grain mass. To define the hole diameter, the temperature, relative humidity and carbon dioxide sensors were placed in probes with different hole diameters (7.5, 7.0 and 6.5 mm), drilling height (470, 235 and 117.5 mm) and grain moistures contents (12.16 and 25%). The holes were made to allow the entry of air and facilitate the response of the sensors. In order to choose the diameter and drilling height of the probe that best fits, one of the requirements was that they meet the two analyzed moistures contents. The readings on the sensors were carried out until the values of temperature, relative humidity and carbon dioxide concentration stabilized. With the validation of the equipment, the definitive probe was made with a polyvinyl chloride tube with a diameter of 50 mm and a height of 1500 mm, with three perforated regions (upper, central and lower). A metallic grain sampler tube was developed to attach the probe. To evaluate the quality of the grains, the hygroscopic equilibrium moisture was obtained from the monitored intergranular air temperature and humidity; the concentration of carbon dioxide (CO2) to indirectly determine the dry matter consumption of the grains, the electrical conductivity test and the germination of the grains were carried out. To early predict physical changes in grain mass, Machine Learning and linear regression algorithms were used. The models tested were: artificial neural networks (ANN), linear regression (LR), M5P algorithm, reduced error pruning tree (REPTree), random forest (RF), and support vector machine (SVM). Among the results it was observed that the elevation of the parameters temperature, relative humidity of the air accelerated the metabolic activity of the grains and intensified the respiration of the grain mass, causing consumption of dry matter and alterations in the physical quality of the corn grains. The monitoring system with sensors for real-time measurement of temperature, relative humidity and concentration of carbon dioxide (CO2) in the mass of corn grains obtained satisfactory results, in which the probe was validated with a hole diameter of 6.5 mm and drilling height of 225 mm. The real-time monitoring of the variables indirectly and precociously determined the changes in the physical quality of the grains during transport, confirmed by the physical analyzes of electrical conductivity and germination. In the 2-hour period, the monitored variables indirectly indicated the physical changes that occurred in the grain mass. The condition of 16% of water content of the corn and the position of superior of the profile of the mass of grains suffered the biggest physical alterations of quality, mainly in the loss of dry matter, in function of the high equilibrium moisture content and respiration of the mass of grains. Real-time monitoring of corn grain mass and the application of Machine Learning algorithms predicted the quantitative and qualitative losses of corn grains in transport. All Machine Learning models, with the exception of the support vector machine algorithm, obtained good results, however, the multiple linear regression reached the best fits, being indicated for the prediction of grain losses in corn transport.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-07T15:13:11Z
2022-06-07T15:13:11Z
2022-03-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/24646
dc.identifier.dark.fl_str_mv ark:/26339/00130000059bb
url http://repositorio.ufsm.br/handle/1/24646
identifier_str_mv ark:/26339/00130000059bb
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172286395711488