CARS untersuchung von energietransferprozessen am Na-H2- system

Detalhes bibliográficos
Autor(a) principal: Cunha, Silvio Luiz Souza
Data de Publicação: 1986
Tipo de documento: Tese
Idioma: deu
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/53522
Resumo: Der Energietransfer von elektronischer Energie in Schwingungs- und Rotationsenergie ist einer der elementarsten nichtadiabatischen Prozesse. Obwohl diese Prozesse seit langen untersucht werden, sind sie nicht im Detail verstanden. Das StoBsystem Na+H2 hat dabei Modellcharakter. Natrium ist ein Wasserstoffãhnliches Atom mit einem s-Elektron auf der auBersten Schale, und H2 ist das einfachste Molekül überhaupt. Ab initio Potentialflachen- Berechnungen sind deshalb mit guter Genauigkeit moglich und auch durchgef iihrt worden. Die elektronische Energie des Na-Atoms von 2,1eV wird dabei durch einen nichtadiabatischen Stoi3 in Schwingungs- und Rotationsenergie des H2-Moleküls iibertragen; ein Vorgang der auch als "Quenchen" bekannt ist. Von essentieller Bedeutung ist es, welche Schwingungs- und Rotationszustãnde besetzt werden. Es gab bisher keine experimentelle Untersuchung, bei der die interne Energieverteilung des H2-Moleküls direkt untersucht wurde. Der Grund dafür ist der, daB konventionelle Techniken zum Nachweis von H2 nicht geeignet sind. Aufgabe der vorliegenden Arbeit war es, erstmals CARS (Kohirente Antistokes-Raman-Streuung) für die oben genannten StoBprozesse einzusetzen und nachzuprüfen, wie gut sich diese Technik anwenden IãBt. CARS ist seit vielen Jahren bekannt, hat jedoch erst in der letzten Zeit durch die Entwicklung von intensiven gepulsten Laser mit geringer Bandbreite sehr an Bedeutung gewonnen. Insbesonders CARS an Wasserstoff wurde intensiv untersucht, nicht jedoch mit Beimischung von Natrium. Im vorliegenden Gasgemisch aus Natrium und H2 erzeugt Natrium durch seine energetisch sehr niedrigen elektronischen Zustãnde einen nichtresonanten Untergrund, der die Nachweis-Wahrscheinlichkeit so stark reduzieren kann, daí3 eine sinnvolle Anwendung nicht mehr mõglich sein konnte. Es ist gelungen zu zeigen, dali trotz eines enormen nichtresonanten Untergrundes eine sehr hohe Nachweiswahrscheinlichkeit mit CARS erzielt werden kann. Sie betrãgt für H2 mit Na im Grundzustand 1012 Teilchen pro cm3 und Quantenzustand und in Gegenwart von angeregtem Natrium 1013 Teilchen pro cm 3 und Quantenzustand. Mit der neu gebauten CARS-Apparatur wurde eine Reihe von neuen Experimenten durchgef a) Es konnte erstmals direkt die Schwingungsverteilung von H2 nach dem Quenchprozel3 bestimmt werden. Es konnte die absolute Besetzung der Schwingungszustãnde v=3,2 und 1 bestimmt werden. Eine Besetzung bei v=4 wurde nicht beobachtet. b) Mit einer zeitabhãngigen CARS-Messung konnte erstmalig die Schwingungsrelaxation der genannten Schwingungszustãnde gemessen und mit einem Ratengleichungsmodell die Ratenkonstanten mit sehr guter Obereinstimmung bestimmt werden. c) Aus der Besetzung der Schwingungszustãnde laBt sich ein absoluter Querschnitt für den Quenchprozei bestimmen. In Vergleich zu den klassischen Fluoreszenzmethoden wird dabei nicht die Abnahme der Fluoreszenz durch den StoBgasdruck bestimmt, sondern die direkte Besetzung des Quenchers nachgewiesen. Diese Methode wird erstmalig vorgestellt. Sie ist viel weniger empfindlich auf Verunreinigungen. Der erhaltene Wert für den Quenchquerschnitt betragt aq=12A2. d) Es laBt sich auch eine Aussage Uber die Rotationsbesetzung nach dem QuenchprozeB machen. Sie konnte bestimmt werden und ist nahezu thermisch, d.h. sie hat dieselbe Temperatur wie die Zelle. Dieses Ergebnis ist in übereinstimmung mit theoretische Modellen und bestãtigt die Vorstellung, dali das p-Orbital des angeregten Natriums sich bei Annãherung an das H2-Molekül ausrichtet und der QuenchprozeB vorwiegend in C2v -Symmetrie ablauft. Es ist gelungen zu zeigen, daB CARS sich erfolgreich für Untersuchungen an nichtadiabatischen StoBprozessen einsetzen laBt. Dadurch wurde erstmals erzielt.