On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)

Detalhes bibliográficos
Autor(a) principal: Viegas, Ivan
Data de Publicação: 2022
Outros Autores: Palma, Mariana, Plagnes-Juan, Elisabeth, Silva, Emanuel, Rito, João, Henriques, Luís F., Tavares, Ludgero C., Ozório, Rodrigo O. A., Panserat, Stéphane, Magnoni, Leonardo J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/100122
https://doi.org/10.3389/fmars.2022.836612
Resumo: Glycerol is the by-product of biodiesel production and its utilisation in fish feed has recently gained relevance. As an important metabolic intermediate and structural component of triacylglycerol (TAG), it is still unclear whether its supplementation affects lipid utilisation and/or deposition in different tissues. Accordingly, a set of studies was aimed to evaluate how increasing levels of dietary glycerol (0, 2.5 and 5%) affect lipid synthesis in the liver, muscle and adipose tissue. After a growth trial with rainbow trout (8 weeks) and European seabass (6 weeks) fish were sampled at 6 and 24 h to assess mRNA levels of lipid metabolism-related enzymes. The remaining fish were subjected to a metabolic trial consisting of a 6-day residence in deuterated water (2H2O) for metabolic flux calculations. This study stands as the second part of a broader experiment that also aimed at evaluating the carbohydrate metabolism (Viegas et al., 2022). Dietary supplementation at 5% glycerol significantly increased plasma TAG levels in both species and liver TAG levels in seabass, with no repercussions on the perivisceral fat index. Despite responding as expected in a postprandial setting, only fas and Δ6-fad in trout and Δ6-fad in seabass responded significantly by increasing with the dietary supplementation of glycerol. In trout, the observed differences in the regulation of these enzymes were not reflected in the de novo lipogenic fluxes. The fractional synthetic rates (FSR) were overall low in all tissues with an average of 0.04, 0.02 and 0.01% d–1, for liver, muscle and perivisceral fat, respectively. In seabass on the other hand, and despite increased mRNA levels in Δ6-fad, the overall lipid profile in the liver muscle and perivisceral fat was higher in MUFA at the expense of lower PUFA. Moreover, glycerol supplementation altered the lipogenic capacity of seabass with hepatic fractional synthetic rates for TAG-bound FA increasing with increasing glycerol levels (0.32 ± 0.18, 0.57 ± 0.18, and 0.82 ± 0.24 for 0%, 2.5% and 5% glycerol supplementation, respectively). The findings of the present study suggest that supplementation up to 2.5% of glycerol did not severely impact the lipid metabolism nor increased lipogenic potential in liver, muscle and perivisceral fat accumulation.
id RCAP_1165fcc10af5d0f32d774b6c80050902
oai_identifier_str oai:estudogeral.uc.pt:10316/100122
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)2H NMRaquaculturecircular economydeuterated waterglycerol, muscleperivisceral fat, triacylglycerol (TAG)Glycerol is the by-product of biodiesel production and its utilisation in fish feed has recently gained relevance. As an important metabolic intermediate and structural component of triacylglycerol (TAG), it is still unclear whether its supplementation affects lipid utilisation and/or deposition in different tissues. Accordingly, a set of studies was aimed to evaluate how increasing levels of dietary glycerol (0, 2.5 and 5%) affect lipid synthesis in the liver, muscle and adipose tissue. After a growth trial with rainbow trout (8 weeks) and European seabass (6 weeks) fish were sampled at 6 and 24 h to assess mRNA levels of lipid metabolism-related enzymes. The remaining fish were subjected to a metabolic trial consisting of a 6-day residence in deuterated water (2H2O) for metabolic flux calculations. This study stands as the second part of a broader experiment that also aimed at evaluating the carbohydrate metabolism (Viegas et al., 2022). Dietary supplementation at 5% glycerol significantly increased plasma TAG levels in both species and liver TAG levels in seabass, with no repercussions on the perivisceral fat index. Despite responding as expected in a postprandial setting, only fas and Δ6-fad in trout and Δ6-fad in seabass responded significantly by increasing with the dietary supplementation of glycerol. In trout, the observed differences in the regulation of these enzymes were not reflected in the de novo lipogenic fluxes. The fractional synthetic rates (FSR) were overall low in all tissues with an average of 0.04, 0.02 and 0.01% d–1, for liver, muscle and perivisceral fat, respectively. In seabass on the other hand, and despite increased mRNA levels in Δ6-fad, the overall lipid profile in the liver muscle and perivisceral fat was higher in MUFA at the expense of lower PUFA. Moreover, glycerol supplementation altered the lipogenic capacity of seabass with hepatic fractional synthetic rates for TAG-bound FA increasing with increasing glycerol levels (0.32 ± 0.18, 0.57 ± 0.18, and 0.82 ± 0.24 for 0%, 2.5% and 5% glycerol supplementation, respectively). The findings of the present study suggest that supplementation up to 2.5% of glycerol did not severely impact the lipid metabolism nor increased lipogenic potential in liver, muscle and perivisceral fat accumulation.This work was supported by Fundação para a Ciência e Tecnologia (FCT; Portugal) through national funds with co-funding from ERDF/FEDER, within the PT2020 Partnership Agreement, and COMPETE 2020: research grant to IV (PTDC/CVT-NUT/2851/2014, PTDC/BAA-AGR/3550/2020); individual grant to MP through Centro2020 (ReNATURE; Centro-01-0145-FEDER-000007); and structural funds to Center for Neuroscience and Cell Biology (UID/NEU/04539/2013) and Centre for Functional Ecology (UID/BIA/04004/2019) and Interdisciplinary Centre of Marine and Environmental Research (UID/Multi/04423/2019). UC-NMR facilities (REEQ/481/QUI/2006, RECI/QEQ-QFI/0168/2012, Centro-07-CT62-FEDER-002012) and Rede Nacional de Ressonância Magnética Nuclear (RNRMN).Frontiers2022-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100122http://hdl.handle.net/10316/100122https://doi.org/10.3389/fmars.2022.836612eng2296-7745Viegas, IvanPalma, MarianaPlagnes-Juan, ElisabethSilva, EmanuelRito, JoãoHenriques, Luís F.Tavares, Ludgero C.Ozório, Rodrigo O. A.Panserat, StéphaneMagnoni, Leonardo J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-06-12T09:59:42Zoai:estudogeral.uc.pt:10316/100122Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:17:34.960449Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
title On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
spellingShingle On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
Viegas, Ivan
2H NMR
aquaculture
circular economy
deuterated water
glycerol, muscle
perivisceral fat, triacylglycerol (TAG)
title_short On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
title_full On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
title_fullStr On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
title_full_unstemmed On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
title_sort On the Utilization of Dietary Glycerol in Carnivorous Fish—Part II: Insights Into Lipid Metabolism of Rainbow Trout (Oncorhynchus mykiss) and European Seabass (Dicentrarchus labrax)
author Viegas, Ivan
author_facet Viegas, Ivan
Palma, Mariana
Plagnes-Juan, Elisabeth
Silva, Emanuel
Rito, João
Henriques, Luís F.
Tavares, Ludgero C.
Ozório, Rodrigo O. A.
Panserat, Stéphane
Magnoni, Leonardo J.
author_role author
author2 Palma, Mariana
Plagnes-Juan, Elisabeth
Silva, Emanuel
Rito, João
Henriques, Luís F.
Tavares, Ludgero C.
Ozório, Rodrigo O. A.
Panserat, Stéphane
Magnoni, Leonardo J.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Viegas, Ivan
Palma, Mariana
Plagnes-Juan, Elisabeth
Silva, Emanuel
Rito, João
Henriques, Luís F.
Tavares, Ludgero C.
Ozório, Rodrigo O. A.
Panserat, Stéphane
Magnoni, Leonardo J.
dc.subject.por.fl_str_mv 2H NMR
aquaculture
circular economy
deuterated water
glycerol, muscle
perivisceral fat, triacylglycerol (TAG)
topic 2H NMR
aquaculture
circular economy
deuterated water
glycerol, muscle
perivisceral fat, triacylglycerol (TAG)
description Glycerol is the by-product of biodiesel production and its utilisation in fish feed has recently gained relevance. As an important metabolic intermediate and structural component of triacylglycerol (TAG), it is still unclear whether its supplementation affects lipid utilisation and/or deposition in different tissues. Accordingly, a set of studies was aimed to evaluate how increasing levels of dietary glycerol (0, 2.5 and 5%) affect lipid synthesis in the liver, muscle and adipose tissue. After a growth trial with rainbow trout (8 weeks) and European seabass (6 weeks) fish were sampled at 6 and 24 h to assess mRNA levels of lipid metabolism-related enzymes. The remaining fish were subjected to a metabolic trial consisting of a 6-day residence in deuterated water (2H2O) for metabolic flux calculations. This study stands as the second part of a broader experiment that also aimed at evaluating the carbohydrate metabolism (Viegas et al., 2022). Dietary supplementation at 5% glycerol significantly increased plasma TAG levels in both species and liver TAG levels in seabass, with no repercussions on the perivisceral fat index. Despite responding as expected in a postprandial setting, only fas and Δ6-fad in trout and Δ6-fad in seabass responded significantly by increasing with the dietary supplementation of glycerol. In trout, the observed differences in the regulation of these enzymes were not reflected in the de novo lipogenic fluxes. The fractional synthetic rates (FSR) were overall low in all tissues with an average of 0.04, 0.02 and 0.01% d–1, for liver, muscle and perivisceral fat, respectively. In seabass on the other hand, and despite increased mRNA levels in Δ6-fad, the overall lipid profile in the liver muscle and perivisceral fat was higher in MUFA at the expense of lower PUFA. Moreover, glycerol supplementation altered the lipogenic capacity of seabass with hepatic fractional synthetic rates for TAG-bound FA increasing with increasing glycerol levels (0.32 ± 0.18, 0.57 ± 0.18, and 0.82 ± 0.24 for 0%, 2.5% and 5% glycerol supplementation, respectively). The findings of the present study suggest that supplementation up to 2.5% of glycerol did not severely impact the lipid metabolism nor increased lipogenic potential in liver, muscle and perivisceral fat accumulation.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/100122
http://hdl.handle.net/10316/100122
https://doi.org/10.3389/fmars.2022.836612
url http://hdl.handle.net/10316/100122
https://doi.org/10.3389/fmars.2022.836612
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2296-7745
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Frontiers
publisher.none.fl_str_mv Frontiers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134071400431616