Event detection from traffic tensors: A hybrid model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5332 http://dx.doi.org/10.1016/j.neucom.2016.04.006 |
Resumo: | A traffic tensor or simply origin x destination x time is a new data model for conventional origin/destination (O/D) matrices. Tensor models are traffic data analysis techniques which use this new data model to improve performance. Tensors outperform other models because both temporal and spatial fluctuations of traffic patterns are simultaneously taken into account, obtaining results that follow a more natural pattern. Three major types of fluctuations can occur in traffic tensors: mutations to the overall traffic flows, alterations to the network topology and chaotic behaviors. How can we detect events in a system that is faced with all types of fluctuations during its life cycle? Our initial studies reveal that the current design of tensor models face some difficulties in dealing with such a realistic scenario. We propose a new hybrid tensor model called HTM that enhances the detection ability of tensor models by using a parallel tracking technique on the traffic's topology. However, tensor decomposition techniques such as Tucker, a key step for tensor models, require a complicated parameter that not only is difficult to choose but also affects the model's quality. We address this problem examining a recent technique called adjustable core size Tucker decomposition (ACS-Tucker). Experiments on simulated and real-world data sets from different domains versus several techniques indicate that the proposed model is effective and robust, therefore it constitutes a viable alternative for analysis of the traffic tensors. |
id |
RCAP_20e27ea8db4fea720c7389e2c9bcbfaa |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5332 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Event detection from traffic tensors: A hybrid modelA traffic tensor or simply origin x destination x time is a new data model for conventional origin/destination (O/D) matrices. Tensor models are traffic data analysis techniques which use this new data model to improve performance. Tensors outperform other models because both temporal and spatial fluctuations of traffic patterns are simultaneously taken into account, obtaining results that follow a more natural pattern. Three major types of fluctuations can occur in traffic tensors: mutations to the overall traffic flows, alterations to the network topology and chaotic behaviors. How can we detect events in a system that is faced with all types of fluctuations during its life cycle? Our initial studies reveal that the current design of tensor models face some difficulties in dealing with such a realistic scenario. We propose a new hybrid tensor model called HTM that enhances the detection ability of tensor models by using a parallel tracking technique on the traffic's topology. However, tensor decomposition techniques such as Tucker, a key step for tensor models, require a complicated parameter that not only is difficult to choose but also affects the model's quality. We address this problem examining a recent technique called adjustable core size Tucker decomposition (ACS-Tucker). Experiments on simulated and real-world data sets from different domains versus several techniques indicate that the proposed model is effective and robust, therefore it constitutes a viable alternative for analysis of the traffic tensors.2018-01-03T10:36:46Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5332http://dx.doi.org/10.1016/j.neucom.2016.04.006engHadi Fanaee TorkJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:40Zoai:repositorio.inesctec.pt:123456789/5332Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:28.656091Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Event detection from traffic tensors: A hybrid model |
title |
Event detection from traffic tensors: A hybrid model |
spellingShingle |
Event detection from traffic tensors: A hybrid model Hadi Fanaee Tork |
title_short |
Event detection from traffic tensors: A hybrid model |
title_full |
Event detection from traffic tensors: A hybrid model |
title_fullStr |
Event detection from traffic tensors: A hybrid model |
title_full_unstemmed |
Event detection from traffic tensors: A hybrid model |
title_sort |
Event detection from traffic tensors: A hybrid model |
author |
Hadi Fanaee Tork |
author_facet |
Hadi Fanaee Tork João Gama |
author_role |
author |
author2 |
João Gama |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hadi Fanaee Tork João Gama |
description |
A traffic tensor or simply origin x destination x time is a new data model for conventional origin/destination (O/D) matrices. Tensor models are traffic data analysis techniques which use this new data model to improve performance. Tensors outperform other models because both temporal and spatial fluctuations of traffic patterns are simultaneously taken into account, obtaining results that follow a more natural pattern. Three major types of fluctuations can occur in traffic tensors: mutations to the overall traffic flows, alterations to the network topology and chaotic behaviors. How can we detect events in a system that is faced with all types of fluctuations during its life cycle? Our initial studies reveal that the current design of tensor models face some difficulties in dealing with such a realistic scenario. We propose a new hybrid tensor model called HTM that enhances the detection ability of tensor models by using a parallel tracking technique on the traffic's topology. However, tensor decomposition techniques such as Tucker, a key step for tensor models, require a complicated parameter that not only is difficult to choose but also affects the model's quality. We address this problem examining a recent technique called adjustable core size Tucker decomposition (ACS-Tucker). Experiments on simulated and real-world data sets from different domains versus several techniques indicate that the proposed model is effective and robust, therefore it constitutes a viable alternative for analysis of the traffic tensors. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2018-01-03T10:36:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5332 http://dx.doi.org/10.1016/j.neucom.2016.04.006 |
url |
http://repositorio.inesctec.pt/handle/123456789/5332 http://dx.doi.org/10.1016/j.neucom.2016.04.006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131609069256704 |