Tensor-based anomaly detection: An interdisciplinary survey

Detalhes bibliográficos
Autor(a) principal: Hadi Fanaee Tork
Data de Publicação: 2016
Outros Autores: João Gama
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/5381
http://dx.doi.org/10.1016/j.knosys.2016.01.027
Resumo: Traditional spectral-based methods such as PCA are popular for anomaly detection in a variety of problems and domains. However, if data includes tensor (multiway) structure (e.g. space-time-measurements), some meaningful anomalies may remain invisible with these methods. Although tensor-based anomaly detection (TAD) has been applied within a variety of disciplines over the last twenty years, it is not yet recognized as a formal category in anomaly detection. This survey aims to highlight the potential of tensor-based techniques as a novel approach for detection and identification of abnormalities and failures. We survey the interdisciplinary works in which TAD is reported and characterize the learning strategies, methods and applications; extract the important open issues in TAD and provide the corresponding existing solutions according to the state-of-the-art.
id RCAP_6ce3fc3ec21d88db0262433b979c6b9e
oai_identifier_str oai:repositorio.inesctec.pt:123456789/5381
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Tensor-based anomaly detection: An interdisciplinary surveyTraditional spectral-based methods such as PCA are popular for anomaly detection in a variety of problems and domains. However, if data includes tensor (multiway) structure (e.g. space-time-measurements), some meaningful anomalies may remain invisible with these methods. Although tensor-based anomaly detection (TAD) has been applied within a variety of disciplines over the last twenty years, it is not yet recognized as a formal category in anomaly detection. This survey aims to highlight the potential of tensor-based techniques as a novel approach for detection and identification of abnormalities and failures. We survey the interdisciplinary works in which TAD is reported and characterize the learning strategies, methods and applications; extract the important open issues in TAD and provide the corresponding existing solutions according to the state-of-the-art.2018-01-03T10:55:50Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5381http://dx.doi.org/10.1016/j.knosys.2016.01.027engHadi Fanaee TorkJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:08Zoai:repositorio.inesctec.pt:123456789/5381Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:43.796952Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Tensor-based anomaly detection: An interdisciplinary survey
title Tensor-based anomaly detection: An interdisciplinary survey
spellingShingle Tensor-based anomaly detection: An interdisciplinary survey
Hadi Fanaee Tork
title_short Tensor-based anomaly detection: An interdisciplinary survey
title_full Tensor-based anomaly detection: An interdisciplinary survey
title_fullStr Tensor-based anomaly detection: An interdisciplinary survey
title_full_unstemmed Tensor-based anomaly detection: An interdisciplinary survey
title_sort Tensor-based anomaly detection: An interdisciplinary survey
author Hadi Fanaee Tork
author_facet Hadi Fanaee Tork
João Gama
author_role author
author2 João Gama
author2_role author
dc.contributor.author.fl_str_mv Hadi Fanaee Tork
João Gama
description Traditional spectral-based methods such as PCA are popular for anomaly detection in a variety of problems and domains. However, if data includes tensor (multiway) structure (e.g. space-time-measurements), some meaningful anomalies may remain invisible with these methods. Although tensor-based anomaly detection (TAD) has been applied within a variety of disciplines over the last twenty years, it is not yet recognized as a formal category in anomaly detection. This survey aims to highlight the potential of tensor-based techniques as a novel approach for detection and identification of abnormalities and failures. We survey the interdisciplinary works in which TAD is reported and characterize the learning strategies, methods and applications; extract the important open issues in TAD and provide the corresponding existing solutions according to the state-of-the-art.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2018-01-03T10:55:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/5381
http://dx.doi.org/10.1016/j.knosys.2016.01.027
url http://repositorio.inesctec.pt/handle/123456789/5381
http://dx.doi.org/10.1016/j.knosys.2016.01.027
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131602749489152