Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers

Detalhes bibliográficos
Autor(a) principal: Kaczor, A.
Data de Publicação: 2007
Outros Autores: Reva, I. D., Proniewicz, L. M., Fausto, R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/17922
https://doi.org/10.1021/jp070097c
Resumo: An extensive analysis of the conformational space of tryptophan (Trp) was performed at the B3LYP/6-311++G(d,p) level and verified by comparison with the infrared spectra of the compound isolated in low-temperature argon and xenon matrixes. Different types of conformers have been unequivocally identified in the matrixes. Type I exhibits the trans arrangement of the carboxylic group and is stabilized by an O−H···N intramolecular H-bond. Types II and III have the carboxylic group in the cis conformation and feature N−H···OC and N−H···O−C hydrogen bonds, respectively. Three individual conformers of type I were identified in the matrixes. Other conformational degrees of freedom are related with the Cα−Cβ−CγC and C1−Cα−Cβ−Cγ angles (χ1 and χ2, respectively). In proteins, these two dihedral angles define the conformations of the amino acid residues. In monomeric Trp, χ1 adopts the “+” (ca. +90°) and “−” (ca. −90°) orientations, while average values of −67.4, 170.5, and 67.6° (“a”, “b”, and “c”, respectively) were found for χ2. Theoretical analysis revealed two important factors in stabilizing the structures of the Trp conformers:  the H-bond type and electrostatic interactions. Classified by the H-bond type, the most stable are forms I, followed by II and III. Out of possible combinations of the χ1 and χ2 dihedral angles, “a+”, “b+”, and “c−” were theoretically found more stable than their “a−”, “b−”, and “c+” counterparts. Thus, the stabilizing effect of interactions involving the pyrrole ring (which are possible in Ia+, Ib+, and Ic− conformers) is considerably higher compared to those in which the phenyl ring is engaged (existing in the Ia−, Ib−, and Ic+ forms).
id RCAP_99ad8ee909821a0c3948f6d3468a2bff
oai_identifier_str oai:estudogeral.uc.pt:10316/17922
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing ConformersAn extensive analysis of the conformational space of tryptophan (Trp) was performed at the B3LYP/6-311++G(d,p) level and verified by comparison with the infrared spectra of the compound isolated in low-temperature argon and xenon matrixes. Different types of conformers have been unequivocally identified in the matrixes. Type I exhibits the trans arrangement of the carboxylic group and is stabilized by an O−H···N intramolecular H-bond. Types II and III have the carboxylic group in the cis conformation and feature N−H···OC and N−H···O−C hydrogen bonds, respectively. Three individual conformers of type I were identified in the matrixes. Other conformational degrees of freedom are related with the Cα−Cβ−CγC and C1−Cα−Cβ−Cγ angles (χ1 and χ2, respectively). In proteins, these two dihedral angles define the conformations of the amino acid residues. In monomeric Trp, χ1 adopts the “+” (ca. +90°) and “−” (ca. −90°) orientations, while average values of −67.4, 170.5, and 67.6° (“a”, “b”, and “c”, respectively) were found for χ2. Theoretical analysis revealed two important factors in stabilizing the structures of the Trp conformers:  the H-bond type and electrostatic interactions. Classified by the H-bond type, the most stable are forms I, followed by II and III. Out of possible combinations of the χ1 and χ2 dihedral angles, “a+”, “b+”, and “c−” were theoretically found more stable than their “a−”, “b−”, and “c+” counterparts. Thus, the stabilizing effect of interactions involving the pyrrole ring (which are possible in Ia+, Ib+, and Ic− conformers) is considerably higher compared to those in which the phenyl ring is engaged (existing in the Ia−, Ib−, and Ic+ forms).American Chemical Society2007-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/17922http://hdl.handle.net/10316/17922https://doi.org/10.1021/jp070097cengKaczor, A.Reva, I. D.Proniewicz, L. M.Fausto, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T03:43:56Zoai:estudogeral.uc.pt:10316/17922Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:45.221647Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
title Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
spellingShingle Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
Kaczor, A.
title_short Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
title_full Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
title_fullStr Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
title_full_unstemmed Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
title_sort Matrix-Isolated Monomeric Tryptophan:  Electrostatic Interactions as Nontrivial Factors Stabilizing Conformers
author Kaczor, A.
author_facet Kaczor, A.
Reva, I. D.
Proniewicz, L. M.
Fausto, R.
author_role author
author2 Reva, I. D.
Proniewicz, L. M.
Fausto, R.
author2_role author
author
author
dc.contributor.author.fl_str_mv Kaczor, A.
Reva, I. D.
Proniewicz, L. M.
Fausto, R.
description An extensive analysis of the conformational space of tryptophan (Trp) was performed at the B3LYP/6-311++G(d,p) level and verified by comparison with the infrared spectra of the compound isolated in low-temperature argon and xenon matrixes. Different types of conformers have been unequivocally identified in the matrixes. Type I exhibits the trans arrangement of the carboxylic group and is stabilized by an O−H···N intramolecular H-bond. Types II and III have the carboxylic group in the cis conformation and feature N−H···OC and N−H···O−C hydrogen bonds, respectively. Three individual conformers of type I were identified in the matrixes. Other conformational degrees of freedom are related with the Cα−Cβ−CγC and C1−Cα−Cβ−Cγ angles (χ1 and χ2, respectively). In proteins, these two dihedral angles define the conformations of the amino acid residues. In monomeric Trp, χ1 adopts the “+” (ca. +90°) and “−” (ca. −90°) orientations, while average values of −67.4, 170.5, and 67.6° (“a”, “b”, and “c”, respectively) were found for χ2. Theoretical analysis revealed two important factors in stabilizing the structures of the Trp conformers:  the H-bond type and electrostatic interactions. Classified by the H-bond type, the most stable are forms I, followed by II and III. Out of possible combinations of the χ1 and χ2 dihedral angles, “a+”, “b+”, and “c−” were theoretically found more stable than their “a−”, “b−”, and “c+” counterparts. Thus, the stabilizing effect of interactions involving the pyrrole ring (which are possible in Ia+, Ib+, and Ic− conformers) is considerably higher compared to those in which the phenyl ring is engaged (existing in the Ia−, Ib−, and Ic+ forms).
publishDate 2007
dc.date.none.fl_str_mv 2007-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/17922
http://hdl.handle.net/10316/17922
https://doi.org/10.1021/jp070097c
url http://hdl.handle.net/10316/17922
https://doi.org/10.1021/jp070097c
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133907940016128