Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites

Detalhes bibliográficos
Autor(a) principal: Zélé, Flore
Data de Publicação: 2020
Outros Autores: Altıntaş, Mustafa, Santos, Inês, Cakmak, Ibrahim, Magalhães, S
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/45436
Resumo: Many studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia-host-pathogen interaction remains elusive. Yet, understanding such interactions and their eco-evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia-infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia-uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within-host-pathogens interaction and the potential eco-evolutionary consequences of the use of biocontrol agents for Wolbachia-host associations.
id RCAP_a303b1d77e919c854bbb206005cc0200
oai_identifier_str oai:repositorio.ul.pt:10451/45436
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Population‐specific effect of Wolbachia on the cost of fungal infection in spider mitesMany studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia-host-pathogen interaction remains elusive. Yet, understanding such interactions and their eco-evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia-infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia-uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within-host-pathogens interaction and the potential eco-evolutionary consequences of the use of biocontrol agents for Wolbachia-host associations.WileyRepositório da Universidade de LisboaZélé, FloreAltıntaş, MustafaSantos, InêsCakmak, IbrahimMagalhães, S2020-12-17T18:43:19Z2020-03-282020-03-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/45436engZélé F, Altıntaş M, Santos I, Cakmak I, Magalhães S. Population-specific effect of Wolbachia on the cost of fungal infection in spider mites. Ecol Evol. 2020;10:3868–3880. https://doi.org/10.1002/ece3.601510.1002/ece3.6015info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:47:05Zoai:repositorio.ul.pt:10451/45436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:57:48.783027Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
title Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
spellingShingle Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
Zélé, Flore
title_short Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
title_full Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
title_fullStr Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
title_full_unstemmed Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
title_sort Population‐specific effect of Wolbachia on the cost of fungal infection in spider mites
author Zélé, Flore
author_facet Zélé, Flore
Altıntaş, Mustafa
Santos, Inês
Cakmak, Ibrahim
Magalhães, S
author_role author
author2 Altıntaş, Mustafa
Santos, Inês
Cakmak, Ibrahim
Magalhães, S
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Zélé, Flore
Altıntaş, Mustafa
Santos, Inês
Cakmak, Ibrahim
Magalhães, S
description Many studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia-host-pathogen interaction remains elusive. Yet, understanding such interactions and their eco-evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia-infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia-uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within-host-pathogens interaction and the potential eco-evolutionary consequences of the use of biocontrol agents for Wolbachia-host associations.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-17T18:43:19Z
2020-03-28
2020-03-28T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/45436
url http://hdl.handle.net/10451/45436
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Zélé F, Altıntaş M, Santos I, Cakmak I, Magalhães S. Population-specific effect of Wolbachia on the cost of fungal infection in spider mites. Ecol Evol. 2020;10:3868–3880. https://doi.org/10.1002/ece3.6015
10.1002/ece3.6015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134522638336000