Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)

Detalhes bibliográficos
Autor(a) principal: Almeida, M. A.
Data de Publicação: 2001
Outros Autores: Cunha, M. A., Alcântara, F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/11141
Resumo: The reactivity of spatially distinct bacterial communities within an estuarine gradient to contrasting water properties was evaluated in the field and experimentally tested in diffusion chambers. In field conditions, it was observed that total and active bacterial numbers were, on average, 3 times higher in brackish water than in marine water. The fraction of active bacteria was, however, similar in both zones (26.6% on average). Total leucine incorporation, as a measure of biomass productivity, was 3.5 times higher in the brackish water zone following the increase in bacterial population size. Productivity seemed also to depend on the level of activity of individual cells since specific leucine incorporation per active cell was 19% higher in the brackish water zone. Experimental assays in diffusion chambers showed that when the marine bacterial community was exposed for 6 h to brackish water, the fraction of active bacteria and leucine incorporation increased (20 to 60% and 50 to 220%, respectively). The opposite was observed when the brackish water community was exposed to marine water (20% decrease in the fraction of active bacteria and 50 to 80% decrease in leucine incorporation). The positive response of marine bacteria to the brackish water conditions was higher when the salinity of the brackish water was artificially increased to 34 psu. Brackish water bacteria, however, responded negatively to this increase in salinity. When the marine community was exposed for only 2 h to brackish water, it promptly showed increased activity. The immediate transfer of this community to marine water for an extra 4 h period induced a return to the initial low activity level. In contrast, the negative response of the brackish water community after 2 h of exposure to marine water was irreversible when transferred back to brackish water. Bacteria remained at a low activity level for the extra 4 h. The high bacterial abundance and production in mid-estuary and the similar patterns of variation of total and active bacteria throughout the system seemed to indicate conservative transport of a euryhaline bacterial community from its main source in the mid-estuary. However, the experimental assays with diffusion chambers invalidated this hypothesis. They suggest the presence of 2 communities: a nutrient-limited marine zone community that grows optimally at high salinity and a nutrient-replete brackish water community requiring salinities below 25 psu.
id RCAP_aee57016c233571ee90668ebe036b9f6
oai_identifier_str oai:ria.ua.pt:10773/11141
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)Active bacteriaLeucine incorporationBacterial stimulationEstuaryThe reactivity of spatially distinct bacterial communities within an estuarine gradient to contrasting water properties was evaluated in the field and experimentally tested in diffusion chambers. In field conditions, it was observed that total and active bacterial numbers were, on average, 3 times higher in brackish water than in marine water. The fraction of active bacteria was, however, similar in both zones (26.6% on average). Total leucine incorporation, as a measure of biomass productivity, was 3.5 times higher in the brackish water zone following the increase in bacterial population size. Productivity seemed also to depend on the level of activity of individual cells since specific leucine incorporation per active cell was 19% higher in the brackish water zone. Experimental assays in diffusion chambers showed that when the marine bacterial community was exposed for 6 h to brackish water, the fraction of active bacteria and leucine incorporation increased (20 to 60% and 50 to 220%, respectively). The opposite was observed when the brackish water community was exposed to marine water (20% decrease in the fraction of active bacteria and 50 to 80% decrease in leucine incorporation). The positive response of marine bacteria to the brackish water conditions was higher when the salinity of the brackish water was artificially increased to 34 psu. Brackish water bacteria, however, responded negatively to this increase in salinity. When the marine community was exposed for only 2 h to brackish water, it promptly showed increased activity. The immediate transfer of this community to marine water for an extra 4 h period induced a return to the initial low activity level. In contrast, the negative response of the brackish water community after 2 h of exposure to marine water was irreversible when transferred back to brackish water. Bacteria remained at a low activity level for the extra 4 h. The high bacterial abundance and production in mid-estuary and the similar patterns of variation of total and active bacteria throughout the system seemed to indicate conservative transport of a euryhaline bacterial community from its main source in the mid-estuary. However, the experimental assays with diffusion chambers invalidated this hypothesis. They suggest the presence of 2 communities: a nutrient-limited marine zone community that grows optimally at high salinity and a nutrient-replete brackish water community requiring salinities below 25 psu.Inter Research2013-10-15T10:28:48Z2001-01-01T00:00:00Z2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/11141eng0948-305510.3354/ame025113Almeida, M. A.Cunha, M. A.Alcântara, F.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-17T03:33:11ZPortal AgregadorONG
dc.title.none.fl_str_mv Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
title Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
spellingShingle Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
Almeida, M. A.
Active bacteria
Leucine incorporation
Bacterial stimulation
Estuary
title_short Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
title_full Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
title_fullStr Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
title_full_unstemmed Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
title_sort Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal)
author Almeida, M. A.
author_facet Almeida, M. A.
Cunha, M. A.
Alcântara, F.
author_role author
author2 Cunha, M. A.
Alcântara, F.
author2_role author
author
dc.contributor.author.fl_str_mv Almeida, M. A.
Cunha, M. A.
Alcântara, F.
dc.subject.por.fl_str_mv Active bacteria
Leucine incorporation
Bacterial stimulation
Estuary
topic Active bacteria
Leucine incorporation
Bacterial stimulation
Estuary
description The reactivity of spatially distinct bacterial communities within an estuarine gradient to contrasting water properties was evaluated in the field and experimentally tested in diffusion chambers. In field conditions, it was observed that total and active bacterial numbers were, on average, 3 times higher in brackish water than in marine water. The fraction of active bacteria was, however, similar in both zones (26.6% on average). Total leucine incorporation, as a measure of biomass productivity, was 3.5 times higher in the brackish water zone following the increase in bacterial population size. Productivity seemed also to depend on the level of activity of individual cells since specific leucine incorporation per active cell was 19% higher in the brackish water zone. Experimental assays in diffusion chambers showed that when the marine bacterial community was exposed for 6 h to brackish water, the fraction of active bacteria and leucine incorporation increased (20 to 60% and 50 to 220%, respectively). The opposite was observed when the brackish water community was exposed to marine water (20% decrease in the fraction of active bacteria and 50 to 80% decrease in leucine incorporation). The positive response of marine bacteria to the brackish water conditions was higher when the salinity of the brackish water was artificially increased to 34 psu. Brackish water bacteria, however, responded negatively to this increase in salinity. When the marine community was exposed for only 2 h to brackish water, it promptly showed increased activity. The immediate transfer of this community to marine water for an extra 4 h period induced a return to the initial low activity level. In contrast, the negative response of the brackish water community after 2 h of exposure to marine water was irreversible when transferred back to brackish water. Bacteria remained at a low activity level for the extra 4 h. The high bacterial abundance and production in mid-estuary and the similar patterns of variation of total and active bacteria throughout the system seemed to indicate conservative transport of a euryhaline bacterial community from its main source in the mid-estuary. However, the experimental assays with diffusion chambers invalidated this hypothesis. They suggest the presence of 2 communities: a nutrient-limited marine zone community that grows optimally at high salinity and a nutrient-replete brackish water community requiring salinities below 25 psu.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01T00:00:00Z
2001
2013-10-15T10:28:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/11141
url http://hdl.handle.net/10773/11141
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0948-3055
10.3354/ame025113
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Inter Research
publisher.none.fl_str_mv Inter Research
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777303496646721536