Magnetic resonance elastography: design and implementation as a clinical tool

Detalhes bibliográficos
Autor(a) principal: Loureiro, Joana Rita Alves
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/9199
Resumo: Tese de mestrado integrado em, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012
id RCAP_d9a99b3908432e5cbc2d4317dcb1369b
oai_identifier_str oai:repositorio.ul.pt:10451/9199
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling Magnetic resonance elastography: design and implementation as a clinical toolElastografia por ressonância magnéticaHardwareMétodo de elementos finitosAnálise dinâmica de elasticidadeTeses de mestrado - 2012Tese de mestrado integrado em, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A viscoelasticidade é uma propriedade física dos tecidos, que se altera quando estes sofrem modificações. Desta forma, esta característica é uma propriedade importante no diagnóstico de doenças que alteram as capacidades elásticas dos tecidos. A palpação manual é uma técnica milenar que é geralmente utilizada para identificar lesões, como por exemplo nódulos e quistos. No entanto, esta técnica depende fortemente da experiência do médico e da região onde se encontra a lesão. Deste modo, na última década tem havido um esforço acrescido para serem desenvolvidas novas técnicas de imagem médica que forneçam informação sobre a elasticidade dos tecidos de uma forma quantitativa. Surge assim a elastografia. Esta técnica é baseada na detecção da deformação do tecido provocada por stresses internos ou externos e tem sido fortemente utilizada, combinada com outras técnicas como a ultrassonografia e a ressonância magnética, no diagnóstico de doenças que influenciam as propriedades elásticas dos tecidos. Inicialmente, a técnica de elastografia começou por ser combinada apenas com ultrassons. Porém, esta técnica apresenta algumas desvantagens devido à sua baixa resolução espacial e devido a apresentar resultados apenas na direcção de propagação da onda. Estas limitações têm servido de incentivo à exploração de técnicas alternativas, como a Elastografia por Ressonância Magnética (MRE, do inglês “Magnetic Resonance Elastography”) e à sua aplicação ao diagnóstico de doenças como a cirrose hepática ou a detecção de tumores. A MRE é uma técnica não invasiva, capaz de detectar a propagação de ondas em tecidos sujeitos a estimulação mecânica, permitindo assim o cálculo do módulo de elasticidade dos tecidos in vivo. Nesta nova modalidade, é usado um sistema convencional de ressonância magnética, em simultâneo com um sistema de actuação que provoca vibrações no tecido de interesse. De modo a que seja possível medir o deslocamento sofrido pelos spins em movimento devido à vibração induzida, é adicionado um gradiente sensível ao movimento (MEG, do inglês “Motion Encoding Gradient”) a uma simples sequência spin-echo EPI. Por fim, esta técnica usa um algoritmo de inversão que se baseia nos deslocamentos medidos, para calcular os mapas de elasticidade do tecido de interesse. O desenvolvimento de equipamentos para MRE representa um desafio devido às inúmeras considerações e limitações que é necessário ter em conta. Por exemplo, o hardware tem de possuir um design que permita uma excitação mecânica dos tecidos, adequada, dentro do campo magnético do equipamento de ressonância magnética e tem de ser confortável para o sujeito que está a ser submetido ao exame. Por outro lado, a optimização dos procedimentos de análise de dados é também uma questão crucial. É no âmbito do desenvolvimento de novas técnicas, métodos e equipamentos de MRE que surge o presente projecto. Este projecto foi desenvolvido no Wolfson Brain Imaging Center (WBIC), no Hospital de Addenbrooke’s, em Cambridge, e teve como objectivos o melhoramento de vários aspectos relacionados com o equipamento e os métodos de aquisição de imagens de um sistema de MRE de aquisição recente no WBIC. Estes melhoramentos traduziram-se em alterações ao nível do hardware e do software. Ao longo dos anos têm sido desenvolvidos vários tipos de actuadores que permitem a excitação dos tecidos. Entre os mais usados estão os actuadores piezoeléctricos, os actuadores pneumáticos e os actuadores electromagnéticos. O actuador piezoeléctrico, produzido pelo grupo do Charité do Instituto de Informática Médica, da Universidade de Berlim, e adquirido pelo WBIC possui dois tipos de set-up; um para a excitação do cérebro e um para a excitação do fígado. Com vista a ter uma perspectiva geral das vantagens e desvantagens dos actuadores piezoeléctricos e dos actuadores pneumáticos, as características de cada um destes, foram criteriosamente estudadas, o que permitiu melhorar e optimizar o actuador piezoeléctrico. Assim, algumas das alterações que foram efectuadas neste sistema foram: alteração da head cradle (set-up do cérebro) para aumentar o conforto do paciente e a eficiência, e a alteração do controlo remoto do amplificador e gerador de ondas, de modo a não ser necessário o deslocamento do técnico na modificação dos parâmetros de MRE. De modo a poder comparar os dois tipos de actuação nos tecidos, foi também um dos objectivos deste projecto desenvolver um sistema pneumático e comparar a sua performance com o equipamento piezoeléctrico comercial desenvolvido pela Mayo-Clinic, Mayo Foundation for Medical Education and Research, e com o actuador piezoeléctrico do WBIC. Com esse fim, foi desenvolvido um actuador pneumático de raiz, a custo reduzido, e o seu desempenho foi avaliado. Para comparar os dois tipos de actuação, efectuaram-se testes de deflexão de movimento num fantoma de gelatina, através do uso de um acelerómetro comercial, para várias frequências de excitação. Três sistemas diferentes foram testados: o piezoeléctrico e dois sistemas pneumáticos: entre eles o actuador desenvolvido no WBIC e o actuador pneumático comercial, desenvolvido na clínica Mayo. A utilização de dois tipos de actuadores pneumáticos permitiu testar se a propagação da onda nos tecidos depende somente do tipo de actuação utilizada (se é através de um actuador pneumático ou piezoeléctrico) ou se está também relacionada com características específicas de hardware de cada actuador. Com este estudo concluiu-se que, tal como seria esperado, o set-up desenhado para o fígado, do actuador piezoeléctrico, induziu um maior deslocamento nos tecidos do que qualquer um dos outros actuadores, quer para baixas frequências (20Hz), quer para altas frequências (80-100 Hz). No entanto, o set-up pneumático da Clínica Mayo induziu um maior deslocamento no fantoma do que o actuador piezoeléctrico para frequências entre os 30 e os 50 Hz. Estes resultados comprovaram a consistência e reprodutibilidade do actuador piezoeléctrico, bem como a sua precisão e controlo para altas frequências. O actuador pneumático desenvolvido no WBIC provou ter pouca potência e induziu um pequeno deslocamento no material comparativamente com os outros actuadores. Contudo, este sistema é de fácil aplicação e introdução no ambiente e na sala de Ressonância Magnética, a custo reduzido. O módulo de elasticidade para um fantoma de gelatina, para o fígado e para o cérebro, foi também calculado através de MRE, quer com o actuador piezoeléctrico quer com o actuador pneumático desenvolvido no WBIC. Concluiu-se que, apesar das desvantagens do actuador pneumático desenvolvido no WBIC, obtiveram-se valores de elasticidade, com este actuador, consistentes e na mesma ordem de grandeza que os valores obtidos com o actuador piezoeléctrico. A literatura de MRE apresenta contradições em diversos estudos, sendo indicados diferentes valores do módulo da elasticidade para o mesmo tecido. Esta incongruência é em parte devida à grande variedade de parâmetros que influencia os resultados de MRE e às condicionantes e limitações do hardware. Desta forma, torna-se essencial a utilização de métodos de validação desta nova modalidade de diagnóstico médico. Neste projecto, foram utilizados modelos de elementos finitos (FEM, do inglês “Finite Element Modelling”) e foi efectuada uma análise dinâmica da elasticidade (DST, do inglês “Dynamic Shear Testing”) de modo a validar os resultados obtidos experimentalmente pela MRE. Identificaram-se dois tipos de parâmetros que influenciam os resultados de MRE: os parâmetros puramente computacionais e os parâmetros experimentais. A validação através de FEMs foi dividida em dois estudos principais: um primeiro estudo que examinou a influência dos parâmetros puramente computacionais e um segundo estudo que examinou a influência dos parâmetros experimentais nos resultados. Em ambos os estudos, desenvolveram-se modelos simétricos relativamente a um eixo e rectangulares prismáticos que representam uma secção semi-axial de um fantoma de gelatina cilíndrico. A face inferior dos modelos foi restringida na direcção y e aplicou-se uma análise dinâmica transiente. O primeiro estudo de FEMs efectuado teve como principal objectivo estudar a influência dos parâmetros puramente computacionais e tentar eliminar a sua influência nos resultados obtidos pelos FEMs. Neste estudo, as condições de fronteira (BC: do inglês “Boundary Conditions”) e a densidade da malha de elementos finitos foram alterados. Para estudar as BC, foram criados dois modelos com dimensões diferentes (100x10 mm e 100x20 mm) e concluiu-se que o modelo com espessura de 20 mm apresentou resultados mais próximos da curva teórica do comprimento de onda em função do módulo de Young. Para estudar a densidade da malha de elementos finitos, foram também criados dois modelos com elementos de dimensões diferentes (1x1 mm e 2x2 mm). As imagens de propagação da onda, ao longo da direcção x do modelo, e o respectivo perfil de deslocamento ao longo da mesma direcção da face superior do fantoma, revelaram que o modelo com elementos de dimensões 2x2mm não foi capaz de detectar a propagação da onda, ao contrário do que aconteceu com o modelo com elementos de dimensões 1x1 mm. Este estudo comprovou a importância da escolha criteriosa quer das condições de fronteira, quer da densidade da malha na criação de modelos finitos, e mostrou que os resultados sofrem modificações importantes aquando da modificação destes dois parâmetros. As conclusões obtidas neste estudo foram aplicadas no segundo estudo com FEMs de modo a eliminar a influência dos parâmetros computacionais. O segundo estudo de FEMs teve como principal objectivo estudar a influência dos parâmetros experimentais, como por exemplo a densidade do material. Para tal, foram criados modelos com diferentes densidades e módulos de Young. Com este estudo, concluiu-se que a propagação da onda nos tecidos (modelo de FEMs) e o correspondente comprimento de onda variam bastante consoante a densidade dos tecidos. Constatou-se que os resultados obtidos para o modelo com densidade de 1kg/mm3 foram os que mais se aproximaram da curva teórica. Por fim, concluiu-se que a densidade dos tecidos altera grandemente os resultados obtidos. A validação através da DST permitiu comparar os resultados obtidos através de MRE com os resultados obtidos através desta técnica de validação, para amostras de três fantomas de gelatina com diferentes concentrações. A análise dinâmica da elasticidade já provou ser, em estudos anteriores, uma técnica capaz de medir o módulo de elasticidade dos tecidos de forma precisa e viável, apesar das suas limitações na vibração a elevadas frequências (frequências em que a MRE opera). Com ambas as técnicas (MRE e DST), obtiveram-se resultados do módulo da elasticidade com a mesma ordem de magnitude. No entanto, com MRE os valores obtidos foram significativamente mais elevados para os três fantomas de concentração de gel diferente. Este resultado deve-se à dependência de ambas as técnicas, relativamente a factores que dificilmente podem ser controlados, como sejam: a espessura das amostras e a sua não uniformidade no caso da DST; e, no caso da MRE, todos os parâmetros que foram descritos e avaliados ao longo deste projecto como as limitações do hardware e possíveis erros induzidos pelo algoritmo de inversão. Em suma, é importante realçar a importância que este projecto teve no desenvolvimento da técnica de MRE no WBIC. É ainda de salientar que este trabalho representou um passo adicional no caminho da aprovação do projecto de MRE na prática clínica, pelo comité ético do hospital de Addenbrooke’s, e uma contribuição para a aceitação desta técnica como método de diagnóstico em meio clínico.Palpation has been used for centuries to detect changes in elasticity in several body regions. However, this technique is clearly limited to regions that are accessible to physician’s hands. Therefore, over the last decades there has been an attempt to develop methods for imaging tissue stiffness that are not hindered by this limitation, such as Magnetic Resonance Elastography (MRE). MRE is a non-invasive technique that can directly measure propagating strain waves due to harmonic mechanical excitation, hence allowing for the in vivo computation of the shear modulus of tissues. One main issue with MRE is the design of an actuation system that enables adequate mechanical excitation within the magnetic field of the magnetic resonance scanner. Pneumatic, electromagnetic, and piezoelectric actuation systems have been employed for MRE examinations of the brain, and abdominal organs such as the liver. One of the goals of the current project was the comparison between the setup already in use at the host laboratory (based on a piezoelectric actuator, connected to a wave generator and a high voltage amplifier), a custom-made pneumatic device developed from scratch during the project and a commercial pneumatic actuator developed by Mayo-Clinic. The comparison involved motion deflection tests carried out in a gelatine phantom with a commercial accelerometer, and obtaining elasticity maps of the gelatine phantom, liver and brain. It was shown that the piezoelectric actuator is more powerful and enables a higher degree of control than the pneumatic actuator. Despite the disadvantages of the custom-made pneumatic system presented, shear elasticity measurements obtained with this system were consistent with the values for elasticity obtained with the piezoelectric set-up for phantom and liver experiments. Another goal of the project was the validation and reliability test of MRE results using two different methods: Finite Element Modelling (FEM) and Dynamic Shear Testing (DST). In spite of the frequency limitations inherent to the DST technique, it was concluded that DST results can be extrapolated to higher frequencies and compared with experimental MRE. The results obtained with both techniques showed good agreement, confirming the validity of MRE for measuring tissue elasticity parameters. This project was crucial in the development of the MRE technique at the host institution and represents a step further towards the acceptance of this new and promising diagnostic technique in clinical practice.Andrade, Alexandre da Rocha Freire de, 1971-Mada, MariusRepositório da Universidade de LisboaLoureiro, Joana Rita Alves2013-09-20T14:44:35Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/9199enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-14T15:05:57ZPortal AgregadorONG
dc.title.none.fl_str_mv Magnetic resonance elastography: design and implementation as a clinical tool
title Magnetic resonance elastography: design and implementation as a clinical tool
spellingShingle Magnetic resonance elastography: design and implementation as a clinical tool
Loureiro, Joana Rita Alves
Elastografia por ressonância magnética
Hardware
Método de elementos finitos
Análise dinâmica de elasticidade
Teses de mestrado - 2012
title_short Magnetic resonance elastography: design and implementation as a clinical tool
title_full Magnetic resonance elastography: design and implementation as a clinical tool
title_fullStr Magnetic resonance elastography: design and implementation as a clinical tool
title_full_unstemmed Magnetic resonance elastography: design and implementation as a clinical tool
title_sort Magnetic resonance elastography: design and implementation as a clinical tool
author Loureiro, Joana Rita Alves
author_facet Loureiro, Joana Rita Alves
author_role author
dc.contributor.none.fl_str_mv Andrade, Alexandre da Rocha Freire de, 1971-
Mada, Marius
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Loureiro, Joana Rita Alves
dc.subject.por.fl_str_mv Elastografia por ressonância magnética
Hardware
Método de elementos finitos
Análise dinâmica de elasticidade
Teses de mestrado - 2012
topic Elastografia por ressonância magnética
Hardware
Método de elementos finitos
Análise dinâmica de elasticidade
Teses de mestrado - 2012
description Tese de mestrado integrado em, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2013-09-20T14:44:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/9199
url http://hdl.handle.net/10451/9199
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777303275594317824