Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications

Bibliographic Details
Main Author: Markovic, Miljana
Publication Date: 2021
Format: Master thesis
Language: eng
Source: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Download full: http://hdl.handle.net/10773/32407
Summary: Technological progress strongly relies on the development of high-performance materials. However, numerous environmental problems associated with the over-exploitation of fossil resources made the process of material design much more demanding and, in particular, sustainable. In this context, the idea behind the present dissertation is to create a biobased conductive nanocomposite material for potential applications in various advanced areas. Specifically, the nanocomposite consists of a poly(ε-caprolactone) (PCL) matrix functionalized with silver nanowires (AgNWs). The main asset of this material is its biobased nature, as well as its improved mechanical and electroconductive performance. Firstly, silver nanowires were synthesized via the polyol method, and characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Secondly, the PCL-based nanocomposite films with different percentages of AgNWs, namely 1, 2, 3 and 7.5% (w/w), were fabricated via the simple and fast solvent casting film-processing methodology. The ensuing nanocomposite films were characterized by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, XRD, SEM, SEM/EDS mapping, thermogravimetric analysis (TGA), tensile tests, dynamic mechanical analysis (DMA), and dielectric measurements. Overall, the synthetized AgNWs were highly crystalline and presented a needle-like morphology. The incorporation of these nanowires into the PCL matrix generated nanocomposite films with thermal stability up to almost 325°C and good mechanical performance with Young’s modulus values higher than 350 MPa. Moreover, the electrical conductivity (σAC) of the PCL-based films was evaluated by impedance spectroscopy and reached a maximum value of 5.7×10-6 S m–1 (at 235 K and 1.0×106 Hz) for the nanocomposite with the highest content of AgNWs (7.5%, PCL/AgNWs_7.5). All the obtained results revealed the potentiality of these thermoplastic nanocomposite films as biobased electroconductive materials for advanced applications.
id RCAP_dbdf9cc855f5174525fabb90c1d19791
oai_identifier_str oai:ria.ua.pt:10773/32407
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applicationsPoly(ɛ-caprolactone)Silver nanowiresBiodegradable filmsAdvanced applicationsConductive nanocompositesTechnological progress strongly relies on the development of high-performance materials. However, numerous environmental problems associated with the over-exploitation of fossil resources made the process of material design much more demanding and, in particular, sustainable. In this context, the idea behind the present dissertation is to create a biobased conductive nanocomposite material for potential applications in various advanced areas. Specifically, the nanocomposite consists of a poly(ε-caprolactone) (PCL) matrix functionalized with silver nanowires (AgNWs). The main asset of this material is its biobased nature, as well as its improved mechanical and electroconductive performance. Firstly, silver nanowires were synthesized via the polyol method, and characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Secondly, the PCL-based nanocomposite films with different percentages of AgNWs, namely 1, 2, 3 and 7.5% (w/w), were fabricated via the simple and fast solvent casting film-processing methodology. The ensuing nanocomposite films were characterized by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, XRD, SEM, SEM/EDS mapping, thermogravimetric analysis (TGA), tensile tests, dynamic mechanical analysis (DMA), and dielectric measurements. Overall, the synthetized AgNWs were highly crystalline and presented a needle-like morphology. The incorporation of these nanowires into the PCL matrix generated nanocomposite films with thermal stability up to almost 325°C and good mechanical performance with Young’s modulus values higher than 350 MPa. Moreover, the electrical conductivity (σAC) of the PCL-based films was evaluated by impedance spectroscopy and reached a maximum value of 5.7×10-6 S m–1 (at 235 K and 1.0×106 Hz) for the nanocomposite with the highest content of AgNWs (7.5%, PCL/AgNWs_7.5). All the obtained results revealed the potentiality of these thermoplastic nanocomposite films as biobased electroconductive materials for advanced applications.O progresso tecnológico depende fortemente do desenvolvimento de materiais de elevado desempenho. No entanto, inúmeros problemas ambientais associados à exploração excessiva de recursos fósseis, tornaram o processo de desenvolvimento de materiais mais exigente e, em particular, sustentável. Neste contexto, o objetivo da presente dissertação é o de criar um material nanocompósito condutor de origem renovável com potencial para aplicações avançadas. Especificamente, o nanocompósito consiste numa matriz de poli(ε- caprolactona) (PCL) funcionalizada com nanofios de prata (AgNWs). A principal vantagem deste material é a sua natureza renovável, bem como os desempenhos mecânico e condutor melhorados. Primeiramente, nanofios de prata foram sintetizados pelo método do poliol e caracterizados por espectroscopia de ultravioleta-visível (UV-vis), difração de raios X (XRD), microscopia eletrónica de varrimento (SEM) e espectroscopia de dispersão de energia (EDS). Em segundo lugar, os filmes nanocompósitos baseados em PCL e com diferentes percentagens de AgNWs, nomeadamente 1, 2, 3 e 7,5% (m/m), foram preparados através do método simples e rápido de evaporação de solvente. Os filmes nanocompósitos resultantes foram caracterizados por espectroscopia de infravermelho com transformada de Fourier-reflexão total atenuada (FTIR-ATR), XRD, SEM, mapeamento por SEM/EDS, análise termogravimétrica (TGA), testes de tração, análise mecânica dinâmica (DMA), e medições dielétricas. Em geral, os AgNWs sintetizados possuem elevada cristalinidade e apresentam uma morfologia semelhante a uma agulha. A incorporação destes nanofios na matriz de PCL originou filmes nanocompósitos com estabilidade térmica até aos 325 °C e bom desempenho mecânico com valores de módulo de Young superiores a 350 MPa. Adicionalmente, a condutividade elétrica (σAC) dos filmes baseados em PCL foi avaliada por espectroscopia de impedância e atingiu um valor máximo de 5,7×10-6 S m–1 (235 K e 1,0×106 Hz) para o nanocompósito com a maior quantidade de AgNWs (7,5%, PCL/AgNWs_7.5). Todos os resultados obtidos demonstram a potencialidade destes filmes nanocompósitos termoplásticos como materiais condutores de base renovável para aplicações avançadas.2023-09-13T00:00:00Z2021-09-07T00:00:00Z2021-09-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/32407engMarkovic, Miljanainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:31Zoai:ria.ua.pt:10773/32407Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:06.173702Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
title Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
spellingShingle Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
Markovic, Miljana
Poly(ɛ-caprolactone)
Silver nanowires
Biodegradable films
Advanced applications
Conductive nanocomposites
title_short Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
title_full Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
title_fullStr Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
title_full_unstemmed Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
title_sort Biodegradable conductive nanocomposites composed of poly(ε-caprolactone) and silver nanowires for advanced applications
author Markovic, Miljana
author_facet Markovic, Miljana
author_role author
dc.contributor.author.fl_str_mv Markovic, Miljana
dc.subject.por.fl_str_mv Poly(ɛ-caprolactone)
Silver nanowires
Biodegradable films
Advanced applications
Conductive nanocomposites
topic Poly(ɛ-caprolactone)
Silver nanowires
Biodegradable films
Advanced applications
Conductive nanocomposites
description Technological progress strongly relies on the development of high-performance materials. However, numerous environmental problems associated with the over-exploitation of fossil resources made the process of material design much more demanding and, in particular, sustainable. In this context, the idea behind the present dissertation is to create a biobased conductive nanocomposite material for potential applications in various advanced areas. Specifically, the nanocomposite consists of a poly(ε-caprolactone) (PCL) matrix functionalized with silver nanowires (AgNWs). The main asset of this material is its biobased nature, as well as its improved mechanical and electroconductive performance. Firstly, silver nanowires were synthesized via the polyol method, and characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Secondly, the PCL-based nanocomposite films with different percentages of AgNWs, namely 1, 2, 3 and 7.5% (w/w), were fabricated via the simple and fast solvent casting film-processing methodology. The ensuing nanocomposite films were characterized by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, XRD, SEM, SEM/EDS mapping, thermogravimetric analysis (TGA), tensile tests, dynamic mechanical analysis (DMA), and dielectric measurements. Overall, the synthetized AgNWs were highly crystalline and presented a needle-like morphology. The incorporation of these nanowires into the PCL matrix generated nanocomposite films with thermal stability up to almost 325°C and good mechanical performance with Young’s modulus values higher than 350 MPa. Moreover, the electrical conductivity (σAC) of the PCL-based films was evaluated by impedance spectroscopy and reached a maximum value of 5.7×10-6 S m–1 (at 235 K and 1.0×106 Hz) for the nanocomposite with the highest content of AgNWs (7.5%, PCL/AgNWs_7.5). All the obtained results revealed the potentiality of these thermoplastic nanocomposite films as biobased electroconductive materials for advanced applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-07T00:00:00Z
2021-09-07
2023-09-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32407
url http://hdl.handle.net/10773/32407
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137696521650176