Testing peak cycling performance: effects of braking force during growth

Detalhes bibliográficos
Autor(a) principal: Dore, Eric
Data de Publicação: 2000
Outros Autores: Bedu, Mario, França, Nanci Maria de, Diallo, Ousmane, Duché, Pascale, Praagh, Emmanuel Van
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UCB
Texto Completo: http://hdl.handle.net/123456789/196
https://repositorio.ucb.br:9443/jspui/handle/123456789/7393
Resumo: The purpose of this study was to investigate the relationship between cycling peak power (CPP; flywheel inertia included) and the applied braking force (F(B)) on a friction-loaded cycle ergometer in male children, adolescents, and adults. A total of 520 male subjects aged 8-20 yr performed three brief maximal sprints against three F(B): 0.245, 0.491, and 0.736 N x kg(-1) body mass (BM) (corresponding applied loads: 25 F(B)25, 50 F(B)50, and 75 F(B)75 g x kg(-1) BM). For each F(B), peak power (PP) was measured (PP25, PP50 and PP75). For each subject, the highest PP was defined as CPP. Results showed that PP was dependent on F(B). In young adults PP25 underestimated CPP by more than 10%, and consequently, F(B)25 seemed to be too low for this population. However, in children, PP75 underestimated CPP by about 20%. A F(B) of 0.736 N x kg(-1) BM was definitively too high for the pediatric population. Therefore, the optimal F(B), even corrected for BM, was lower in children than in adults. The influence of growth and maturation on the force-generating capacity of the leg muscles may explain this difference. In this study, however, it was shown that the difference between PP50 and CPP was independent of age for the whole population investigated. Consequently, when flywheel inertia is included, one cycling sprint with a F(B) of 0.495 N x kg(-1) BM (corresponding applied load: 50 g x kg(-1) BM) is a feasible method for testing both children, adolescents, or young adults.
id UCB-2_f135bd18747a68fb0dc5d8cc3dd5a86e
oai_identifier_str oai:200.214.135.189:123456789/7393
network_acronym_str UCB-2
network_name_str Repositório Institucional da UCB
spelling Dore, EricBedu, MarioFrança, Nanci Maria deDiallo, OusmaneDuché, PascalePraagh, Emmanuel Van2016-10-10T03:51:20Z2016-10-10T03:51:20Z2000Doré, Eric. et al. Testing peak cycling performance: effects of braking force during growth. Medicine & Science in Sports & Exercise, n. 32, v. 2, p. 493-498,2000.http://hdl.handle.net/123456789/196https://repositorio.ucb.br:9443/jspui/handle/123456789/7393The purpose of this study was to investigate the relationship between cycling peak power (CPP; flywheel inertia included) and the applied braking force (F(B)) on a friction-loaded cycle ergometer in male children, adolescents, and adults. A total of 520 male subjects aged 8-20 yr performed three brief maximal sprints against three F(B): 0.245, 0.491, and 0.736 N x kg(-1) body mass (BM) (corresponding applied loads: 25 F(B)25, 50 F(B)50, and 75 F(B)75 g x kg(-1) BM). For each F(B), peak power (PP) was measured (PP25, PP50 and PP75). For each subject, the highest PP was defined as CPP. Results showed that PP was dependent on F(B). In young adults PP25 underestimated CPP by more than 10%, and consequently, F(B)25 seemed to be too low for this population. However, in children, PP75 underestimated CPP by about 20%. A F(B) of 0.736 N x kg(-1) BM was definitively too high for the pediatric population. Therefore, the optimal F(B), even corrected for BM, was lower in children than in adults. The influence of growth and maturation on the force-generating capacity of the leg muscles may explain this difference. In this study, however, it was shown that the difference between PP50 and CPP was independent of age for the whole population investigated. Consequently, when flywheel inertia is included, one cycling sprint with a F(B) of 0.495 N x kg(-1) BM (corresponding applied load: 50 g x kg(-1) BM) is a feasible method for testing both children, adolescents, or young adults.Made available in DSpace on 2016-10-10T03:51:20Z (GMT). No. of bitstreams: 2 Testing peak cycling performance_.pdf: 1101708 bytes, checksum: 35c6963451e57a627beaac99017587d5 (MD5) license.txt: 1818 bytes, checksum: 46de3043f08e87659ae535ef74b8ce9d (MD5) Previous issue date: 2000SimPublicadoTextoCycling peak powerFlywheel inertiaChildrenMass-related anaerobic performanceTesting peak cycling performance: effects of braking force during growthinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMedicine e Science in Sports e Exerciseinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCBORIGINALTesting peak cycling performance_.pdfapplication/pdf1101708https://200.214.135.178:9443/jspui/bitstream/123456789/7393/1/Testing%20peak%20cycling%20performance_.pdf35c6963451e57a627beaac99017587d5MD51LICENSElicense.txttext/plain1818https://200.214.135.178:9443/jspui/bitstream/123456789/7393/2/license.txt46de3043f08e87659ae535ef74b8ce9dMD52TEXTTesting peak cycling performance_.pdf.txtTesting peak cycling performance_.pdf.txtExtracted texttext/plain25347https://200.214.135.178:9443/jspui/bitstream/123456789/7393/3/Testing%20peak%20cycling%20performance_.pdf.txt943f9ee31b310707e8868b31b3d81fa1MD53123456789/73932017-01-17 15:09:29.004TElDRU4/QSBERSBESVNUUklCVUk/P08gTj9PLUVYQ0xVU0lWQSAKCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2VuP2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgYSBVbml2ZXJzaWRhZGUgQ2F0P2xpY2EgZGUgQnJhcz9saWEgbyBkaXJlaXRvIG4/by1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGVtIGJhaXhvKSxjb211bmljYXIgZS9vdSBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtIGZvcm1hdG8gZGlnaXRhbCBvdSBpbXByZXNzbyBlIGVtIHF1YWxxdWVyIG1laW8uIAoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgPyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsIGUgcXVlIGRldD9tIG8gZGlyZWl0byBkZSBjb25jZWRlcm9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2VuP2EuIERlY2xhcmEgdGFtYj9tIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG4/byBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSA/IHBvc3M/dmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuIAoKYykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgY29udD9tIG1hdGVyaWFsIGRvIHF1YWwgbj9vIGRldD9tIG9zIGRpcmVpdG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBvYnRldmUgYXV0b3JpemE/P28gZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgYSBVbml2ZXJzaWRhZGUgQ2F0P2xpY2EgZGUgQnJhcz9saWEgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHM/byBkZSB0ZXJjZWlyb3MgZXN0PyBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlP2RvIGRvIGRvY3VtZW50byBlbnRyZWd1ZS4gCgpTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSA/IGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvIHBvciBvdXRyYSBpbnN0aXR1aT8/byBxdWUgbj9vIGEgVW5pdmVyc2lkYWRlIENhdD9saWNhIGRlIEJyYXM/bGlhLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2E/P2VzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uIAoKQSBVbml2ZXJzaWRhZGUgQ2F0P2xpY2EgZGUgQnJhcz9saWEgaWRlbnRpZmljYXI/IGNsYXJhbWVudGUgbyhzKSBzZXUgKHZvc3NvKSBub21lKHMpIGNvbW8gbyhzKSBhdXRvcihlcykgb3UgZGV0ZW50b3IoZXMpZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSwgZSBuP28gZmFyPyBxdWFscXVlciBhbHRlcmE/P28sIHBhcmEgYWw/bSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbj9hCgo/IG5lY2Vzcz9yaW8gcXVlIGNvbmNvcmRlIGNvbSBhIGxpY2VuP2EgZGUgZGlzdHJpYnVpPz9vIG4/by1leGNsdXNpdmEsIGFudGVzIGRvIHNldSBkb2N1bWVudG8gcG9kZXIgYXBhcmVjZXIgbmEgUmVwb3NpdD9yaW8gZGEgVW5pdmVyc2lkYWRlIENhdD9saWNhIGRlIEJyYXM/bGlhLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbj9hIGF0ZW50YW1lbnRlLiBDYXNvIHByZXRlbmRhIGFsZ3VtIGVzY2xhcmVjaW1lbnRvIGVudHJlIGVtIGNvbnRhdG8gcG9yIGNvcnJlaW8gZWxldHI/bmljbyAtIGNkaUB1Y2IuYnIgb3UgdGVsZWZvbmUgLSAoMHh4NjEpIDMzNTYtOTAyOS85MDk5LgoKRepositório de Publicaçõeshttps://repositorio.ucb.br:9443/jspui/
dc.title.pt_BR.fl_str_mv Testing peak cycling performance: effects of braking force during growth
title Testing peak cycling performance: effects of braking force during growth
spellingShingle Testing peak cycling performance: effects of braking force during growth
Dore, Eric
Cycling peak power
Flywheel inertia
Children
Mass-related anaerobic performance
title_short Testing peak cycling performance: effects of braking force during growth
title_full Testing peak cycling performance: effects of braking force during growth
title_fullStr Testing peak cycling performance: effects of braking force during growth
title_full_unstemmed Testing peak cycling performance: effects of braking force during growth
title_sort Testing peak cycling performance: effects of braking force during growth
author Dore, Eric
author_facet Dore, Eric
Bedu, Mario
França, Nanci Maria de
Diallo, Ousmane
Duché, Pascale
Praagh, Emmanuel Van
author_role author
author2 Bedu, Mario
França, Nanci Maria de
Diallo, Ousmane
Duché, Pascale
Praagh, Emmanuel Van
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Dore, Eric
Bedu, Mario
França, Nanci Maria de
Diallo, Ousmane
Duché, Pascale
Praagh, Emmanuel Van
dc.subject.por.fl_str_mv Cycling peak power
Flywheel inertia
Children
Mass-related anaerobic performance
topic Cycling peak power
Flywheel inertia
Children
Mass-related anaerobic performance
dc.description.abstract.por.fl_txt_mv The purpose of this study was to investigate the relationship between cycling peak power (CPP; flywheel inertia included) and the applied braking force (F(B)) on a friction-loaded cycle ergometer in male children, adolescents, and adults. A total of 520 male subjects aged 8-20 yr performed three brief maximal sprints against three F(B): 0.245, 0.491, and 0.736 N x kg(-1) body mass (BM) (corresponding applied loads: 25 F(B)25, 50 F(B)50, and 75 F(B)75 g x kg(-1) BM). For each F(B), peak power (PP) was measured (PP25, PP50 and PP75). For each subject, the highest PP was defined as CPP. Results showed that PP was dependent on F(B). In young adults PP25 underestimated CPP by more than 10%, and consequently, F(B)25 seemed to be too low for this population. However, in children, PP75 underestimated CPP by about 20%. A F(B) of 0.736 N x kg(-1) BM was definitively too high for the pediatric population. Therefore, the optimal F(B), even corrected for BM, was lower in children than in adults. The influence of growth and maturation on the force-generating capacity of the leg muscles may explain this difference. In this study, however, it was shown that the difference between PP50 and CPP was independent of age for the whole population investigated. Consequently, when flywheel inertia is included, one cycling sprint with a F(B) of 0.495 N x kg(-1) BM (corresponding applied load: 50 g x kg(-1) BM) is a feasible method for testing both children, adolescents, or young adults.
dc.description.version.pt_BR.fl_txt_mv Sim
dc.description.status.pt_BR.fl_txt_mv Publicado
description The purpose of this study was to investigate the relationship between cycling peak power (CPP; flywheel inertia included) and the applied braking force (F(B)) on a friction-loaded cycle ergometer in male children, adolescents, and adults. A total of 520 male subjects aged 8-20 yr performed three brief maximal sprints against three F(B): 0.245, 0.491, and 0.736 N x kg(-1) body mass (BM) (corresponding applied loads: 25 F(B)25, 50 F(B)50, and 75 F(B)75 g x kg(-1) BM). For each F(B), peak power (PP) was measured (PP25, PP50 and PP75). For each subject, the highest PP was defined as CPP. Results showed that PP was dependent on F(B). In young adults PP25 underestimated CPP by more than 10%, and consequently, F(B)25 seemed to be too low for this population. However, in children, PP75 underestimated CPP by about 20%. A F(B) of 0.736 N x kg(-1) BM was definitively too high for the pediatric population. Therefore, the optimal F(B), even corrected for BM, was lower in children than in adults. The influence of growth and maturation on the force-generating capacity of the leg muscles may explain this difference. In this study, however, it was shown that the difference between PP50 and CPP was independent of age for the whole population investigated. Consequently, when flywheel inertia is included, one cycling sprint with a F(B) of 0.495 N x kg(-1) BM (corresponding applied load: 50 g x kg(-1) BM) is a feasible method for testing both children, adolescents, or young adults.
publishDate 2000
dc.date.issued.fl_str_mv 2000
dc.date.accessioned.fl_str_mv 2016-10-10T03:51:20Z
dc.date.available.fl_str_mv 2016-10-10T03:51:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
status_str publishedVersion
format article
dc.identifier.citation.fl_str_mv Doré, Eric. et al. Testing peak cycling performance: effects of braking force during growth. Medicine & Science in Sports & Exercise, n. 32, v. 2, p. 493-498,2000.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/123456789/196
https://repositorio.ucb.br:9443/jspui/handle/123456789/7393
identifier_str_mv Doré, Eric. et al. Testing peak cycling performance: effects of braking force during growth. Medicine & Science in Sports & Exercise, n. 32, v. 2, p. 493-498,2000.
url http://hdl.handle.net/123456789/196
https://repositorio.ucb.br:9443/jspui/handle/123456789/7393
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Texto
dc.source.none.fl_str_mv reponame:Repositório Institucional da UCB
instname:Universidade Católica de Brasília (UCB)
instacron:UCB
instname_str Universidade Católica de Brasília (UCB)
instacron_str UCB
institution UCB
reponame_str Repositório Institucional da UCB
collection Repositório Institucional da UCB
bitstream.url.fl_str_mv https://200.214.135.178:9443/jspui/bitstream/123456789/7393/1/Testing%20peak%20cycling%20performance_.pdf
https://200.214.135.178:9443/jspui/bitstream/123456789/7393/2/license.txt
https://200.214.135.178:9443/jspui/bitstream/123456789/7393/3/Testing%20peak%20cycling%20performance_.pdf.txt
bitstream.checksum.fl_str_mv 35c6963451e57a627beaac99017587d5
46de3043f08e87659ae535ef74b8ce9d
943f9ee31b310707e8868b31b3d81fa1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1724829827108700160