Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas

Detalhes bibliográficos
Autor(a) principal: BORGES, Régis Munhoz Krás
Data de Publicação: 2002
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPA
Texto Completo: http://repositorio.ufpa.br/jspui/handle/2011/8173
Resumo: Na borda oeste do pluton Água Boa, na mina Pitinga (AM), ocorrem três tipos de greisens estaníferos associados espacialmente à fácies granito rapakivi: greisen 1 (Gs1), constituído principalmente por quartzo, topázio, siderofilita marrom e esfalerita; greisen 2 (Gs2), formado essencialmente por quartzo, fengita e clorita; greisen 3 (Gs3), constituído essencialmente por quartzo, fluorita e fengita, com quantidades subordinadas de siderofilita verde. Além disso, associado ao Gs2, ocorre um epi-sienito potássico (EpSK), formado pela dessilicificação do granito rapakivi. Apesar de suas diferenças composicionais e petrográficas, os greisens e epi-sienitos se formaram a partir do mesmo protólito granítico, um hornblenda-biotita-álcali-feldspato-granito a sienogranito. O Gsl apresenta uma zonação interna definida pela predominância de determinados minerais. Assim, ao longo de um halo de alteração contínuo, a zona rica em siderofilita (ZS) está em contato com o granito greisenizado, enquanto que a zona rica em topázio (ZT) situa-se mais afastada do granito. A siderofilita marrom apresenta teores moderados em AI, e sua variação composicional ocorre pela substituição de Fe+2 por A1+3 e Li nos sítios octaédricos, com geração de vacâncias, e concomitante substituição de A1+3por Si+4nos sítios tetraédricos. No Gs2, as zonas mineralógicas estão separadas espacialmente, em níveis onde predomina a fengita (ZF) ou a clorita (ZC). A fengita apresenta um mecanismo evolutivo em que o viAl é substituído por Fe+2 nos sítios octaédricos, com enriquecimento acoplado de Si+4 às expensas de A1+3 nos sítios tetraédricos. Seus teores de Li calculado são ainda menores do que aqueles estimados para a siderofilita do Gs1. No Gs3, a siderofilita verde é composicionalmente mais rica em VIAl e mais pobre em F do que a siderofilita do Gsl, enquanto que a fengita subdivide-se em dois tipos composicionais: uma fengita mais aluminosa, pobre em Fe+2, e uma mais rica em F e Fe+2, que segue os mesmos trends evolutivos apresentados pela fengita do Gs2. A clorita dos três greisens é extremamente rica em Fe, do tipo dafnita. Na sua estrutura, a substituição de 'JIA' por cátions R+2 causa um aumento na ocupação tetraédrica do Si. As cloritas mais aluminosas apresentam as mais altas temperaturas de formação, segundo os geotermômetros clássicos propostos na literatura. Os greisens são resultantes de diferentes processos de interação entre três fluidos principais: (1) fluido aquo-carbônico de baixa salinidade, rico em F, com temperaturas iniciais entre 400° e 350°C, presente durante a formação do Gs1 e Gs3; (2) fluido aquoso de baixa salinidade, e temperatura ao redor de 300°C e que, ao longo de um processo contínuo de salinização, gera um fluido residual de salinidade moderada a alta, com temperaturas entre 200° e 100°C, presente durante a formação do Gs2 e no estágio de silicificação do EpSK; (3) fluido aquoso de baixa salinidade, com temperaturas entre 2000 e 150°C, e que interagiu com os outros dois fluidos, contribuindo, em diferentes graus, para a formação de praticamente todas as rochas hidrotermais. Os dois primeiros fluidos aparentemente têm origem ortomagmática, enquanto que o último tem características de fluido superficial (meteórico?). Além destes, considera-se que o fluido responsável pelo estágio inicial do processo de epi-sienitização não ficou registrado nas amostras estudadas. Estes fluidos foram aprisionados em condições de pressão ao redor de 1 Kb, compatível com níveis crustais rasos, como parece ser o caso dos granitos estaniferos de Pitinga. Tanto a epi-sienitização quanto a greisenização ocorreram sem mudanças no volume original do granito, enquanto as variações de massa decorrentes das transformações causaram as diferenças nas densidades das rochas alteradas. A greisenização causou uma grande remoção em Na2O e K2O, enquanto que SiO2 permaneceu imóvel no Gsl e foi parcialmente removido no Gs2. O Al2O3 sofreu perdas durante a formação do Gs2, mas foi parcialmente adicionado ao Gsl. Os responsáveis pelo aumento de massa durante a greisenização foram Fe2O3 (Fe total), Sn, S, voláteis (P.F.) e F. No Gsl, a diminuição da atividade do F e o aumento da fO2 durante o resfriamento, causaram mudanças químicas nos fluidos, e a conseqüente diferenciação entre a ZT, nas porções mais internas dos condutos/fraturas, e a ZS, mais próxima do granito encaixante. O Gs3 foi formado sob condições mais oxidantes e por fluidos mais pobres em F do que aqueles aprisionados na ZS. A geração de cavidades de dissolução durante a epi-sienitização aumentou a permeabilidade das rochas alteradas, propiciando o aumento das razões fluido-rocha no sitio de formação do EpSK e Gs2. A interação dos fluidos aquosos com os feldspatos do EpSK, durante a formação do Gs2, causou um aumento contínuo na sua salinidade. A ZF foi formada nos estágios mais precoces desta interação, sob temperaturas relativamente mais altas, enquanto que a ZC é um produto dos fluidos aquosos residuais, mais salinos e mais frios. Estes fluidos residuais também foram aprisionados no quartzo de preenchimento de cavidades no EpSK durante o processo de silicificação tardia. Desta forma, os greisens e epi-sienitos potássicos foram formados pela interação entre, pelo menos, três fluidos de origem aparentemente independente, a partir do mesmo protólito granítico, em condições de crosta rasa. As variações nas condições de fO2, atividade do F e salinidade, durante o resfriamento do sistema hidrotermal, e contrastes nas razões fluido-rocha causadas por diferenças de permeabilidade, foram fatores fundamentais para a diferenciação dos greisens. Estes fatores influenciaram sobremaneira as mudanças composicionais dos fluidos e foram responsáveis pela precipitação de cassiterita e sulfetos nos greisens, e pelo enriquecimento em Sn e S durante a greisenização tardia dos epi-sienitos potássicos.
id UFPA_4703814668b1a465025c5b7a2f6acef7
oai_identifier_str oai:repositorio.ufpa.br:2011/8173
network_acronym_str UFPA
network_name_str Repositório Institucional da UFPA
repository_id_str 2123
spelling 2017-04-17T16:26:56Z2017-04-17T16:26:56Z2002-10-23BORGES, Régis Munhoz Krás. Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas. Orientador: Roberto Dall'Agnol. 2002. 383 f. Tese (Doutorado em Geologia e Geoquímica) - Centro de Geociências, Universidade Federal do Pará, Belém, 2002. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/8173. Acesso em:.http://repositorio.ufpa.br/jspui/handle/2011/8173Na borda oeste do pluton Água Boa, na mina Pitinga (AM), ocorrem três tipos de greisens estaníferos associados espacialmente à fácies granito rapakivi: greisen 1 (Gs1), constituído principalmente por quartzo, topázio, siderofilita marrom e esfalerita; greisen 2 (Gs2), formado essencialmente por quartzo, fengita e clorita; greisen 3 (Gs3), constituído essencialmente por quartzo, fluorita e fengita, com quantidades subordinadas de siderofilita verde. Além disso, associado ao Gs2, ocorre um epi-sienito potássico (EpSK), formado pela dessilicificação do granito rapakivi. Apesar de suas diferenças composicionais e petrográficas, os greisens e epi-sienitos se formaram a partir do mesmo protólito granítico, um hornblenda-biotita-álcali-feldspato-granito a sienogranito. O Gsl apresenta uma zonação interna definida pela predominância de determinados minerais. Assim, ao longo de um halo de alteração contínuo, a zona rica em siderofilita (ZS) está em contato com o granito greisenizado, enquanto que a zona rica em topázio (ZT) situa-se mais afastada do granito. A siderofilita marrom apresenta teores moderados em AI, e sua variação composicional ocorre pela substituição de Fe+2 por A1+3 e Li nos sítios octaédricos, com geração de vacâncias, e concomitante substituição de A1+3por Si+4nos sítios tetraédricos. No Gs2, as zonas mineralógicas estão separadas espacialmente, em níveis onde predomina a fengita (ZF) ou a clorita (ZC). A fengita apresenta um mecanismo evolutivo em que o viAl é substituído por Fe+2 nos sítios octaédricos, com enriquecimento acoplado de Si+4 às expensas de A1+3 nos sítios tetraédricos. Seus teores de Li calculado são ainda menores do que aqueles estimados para a siderofilita do Gs1. No Gs3, a siderofilita verde é composicionalmente mais rica em VIAl e mais pobre em F do que a siderofilita do Gsl, enquanto que a fengita subdivide-se em dois tipos composicionais: uma fengita mais aluminosa, pobre em Fe+2, e uma mais rica em F e Fe+2, que segue os mesmos trends evolutivos apresentados pela fengita do Gs2. A clorita dos três greisens é extremamente rica em Fe, do tipo dafnita. Na sua estrutura, a substituição de 'JIA' por cátions R+2 causa um aumento na ocupação tetraédrica do Si. As cloritas mais aluminosas apresentam as mais altas temperaturas de formação, segundo os geotermômetros clássicos propostos na literatura. Os greisens são resultantes de diferentes processos de interação entre três fluidos principais: (1) fluido aquo-carbônico de baixa salinidade, rico em F, com temperaturas iniciais entre 400° e 350°C, presente durante a formação do Gs1 e Gs3; (2) fluido aquoso de baixa salinidade, e temperatura ao redor de 300°C e que, ao longo de um processo contínuo de salinização, gera um fluido residual de salinidade moderada a alta, com temperaturas entre 200° e 100°C, presente durante a formação do Gs2 e no estágio de silicificação do EpSK; (3) fluido aquoso de baixa salinidade, com temperaturas entre 2000 e 150°C, e que interagiu com os outros dois fluidos, contribuindo, em diferentes graus, para a formação de praticamente todas as rochas hidrotermais. Os dois primeiros fluidos aparentemente têm origem ortomagmática, enquanto que o último tem características de fluido superficial (meteórico?). Além destes, considera-se que o fluido responsável pelo estágio inicial do processo de epi-sienitização não ficou registrado nas amostras estudadas. Estes fluidos foram aprisionados em condições de pressão ao redor de 1 Kb, compatível com níveis crustais rasos, como parece ser o caso dos granitos estaniferos de Pitinga. Tanto a epi-sienitização quanto a greisenização ocorreram sem mudanças no volume original do granito, enquanto as variações de massa decorrentes das transformações causaram as diferenças nas densidades das rochas alteradas. A greisenização causou uma grande remoção em Na2O e K2O, enquanto que SiO2 permaneceu imóvel no Gsl e foi parcialmente removido no Gs2. O Al2O3 sofreu perdas durante a formação do Gs2, mas foi parcialmente adicionado ao Gsl. Os responsáveis pelo aumento de massa durante a greisenização foram Fe2O3 (Fe total), Sn, S, voláteis (P.F.) e F. No Gsl, a diminuição da atividade do F e o aumento da fO2 durante o resfriamento, causaram mudanças químicas nos fluidos, e a conseqüente diferenciação entre a ZT, nas porções mais internas dos condutos/fraturas, e a ZS, mais próxima do granito encaixante. O Gs3 foi formado sob condições mais oxidantes e por fluidos mais pobres em F do que aqueles aprisionados na ZS. A geração de cavidades de dissolução durante a epi-sienitização aumentou a permeabilidade das rochas alteradas, propiciando o aumento das razões fluido-rocha no sitio de formação do EpSK e Gs2. A interação dos fluidos aquosos com os feldspatos do EpSK, durante a formação do Gs2, causou um aumento contínuo na sua salinidade. A ZF foi formada nos estágios mais precoces desta interação, sob temperaturas relativamente mais altas, enquanto que a ZC é um produto dos fluidos aquosos residuais, mais salinos e mais frios. Estes fluidos residuais também foram aprisionados no quartzo de preenchimento de cavidades no EpSK durante o processo de silicificação tardia. Desta forma, os greisens e epi-sienitos potássicos foram formados pela interação entre, pelo menos, três fluidos de origem aparentemente independente, a partir do mesmo protólito granítico, em condições de crosta rasa. As variações nas condições de fO2, atividade do F e salinidade, durante o resfriamento do sistema hidrotermal, e contrastes nas razões fluido-rocha causadas por diferenças de permeabilidade, foram fatores fundamentais para a diferenciação dos greisens. Estes fatores influenciaram sobremaneira as mudanças composicionais dos fluidos e foram responsáveis pela precipitação de cassiterita e sulfetos nos greisens, e pelo enriquecimento em Sn e S durante a greisenização tardia dos epi-sienitos potássicos.Three stanniferous greisen types were characterized in the western border of Água Boa pluton, Pitinga mine (AM), associated with the rapakivi granite facies: greisen 1 (Gsl), composed mainly by quartz, topaz, brown siderophyllite and sphalerite; greisen 2 (Gs2), composed essentially by quartz, phengite and chlorite; greisen 3 (Gs3), composed of quartz, fluorite and phengite, with minor green siderophyllite. Besides these rocks, a potassic episyenite (EpSK) was identified associated with the Gs2. In spite of the compositional and petrographic differences, all of these hydrothermal rocks derived from a same protholith, a hornblende biotite aikali feldspar granite to syenogranite. The Gsl shows an inner mineralogical zoning defined by topaz or siderophyllite predominance. Along drill cores, the siderophyllite-rich zone occurs near the contact with the greisenized grafite and the topaz-rich zone is situated far from the grafite contact. The brown siderophyllite displays moderated Al contents, and its compositional changes can be explained by Fe+2 substitution for A1+3 and Li in octahedral sites, with a coupled Al+3 substitution for Si+4 in tetrahedral sites. The mineralogical zones in the Gs2 are physicaliy separated in leveis with phengite or chlorite predominance. The mica of Gs2 is a phengite, whose chemical variation is due to substitution of viAl for Fe+2, coupled with Si+4 enrichment. The calculated Li contents in phengites are lesser than those estimated in siderophyllite. The green siderophyllite from Gs3 is VIAl richer and F poorer than Gs1 brown siderophyllite, and the phengite displays two compositional types: an early Fe+2-poor aluminous phengite and a later Fe+2- F-rich one whose chemical variation is similar to that of Gs2 phengite. The chlorite from the three greisen is a Fe-rich daphnite, and its compositional range is due to VIAl substitution for R+2 cations, coupled with Si+2 enrichment. The aluminous chlorite displays higher temperature formation than ferrous one, according to the geothermeter proposed in the literature. The Pitinga greisens were formed by different processes of interaction among three main fluids: (1) low salinity, F-rich, aquo-carbonic fluid, with initial temperatures between 400° -350°C, present during Gsl and Gs3 formation; (2) low salinity aqueous fluid, with a temperature around 300°C, which during a progressive salinity increasing process, originates a moderate to high salinity residual fluid, with temperatures between 200° - 100°C, present during the Gs2 formation and silicification stage of EpSK; (3) low salinity aqueous fluid, with temperatures between 200° - 150°C, which interplayed with the others two fluids in differents grades, contributing to the formation of ali the hydrothermal rocks. The first two fluids has seemingly an orthomagmatic origin while the latter has a surface characteristic (meteoric water?). Moreover, the data suggests that the fluid responsible by the initial stage of the episyenitization process was not registered in the studied samples. These fluids were trapped in pressure conditions around 1 Kbar, representing high crustal levels conditions, similar to that of the stanniferous granites from Pitinga. Both episyenitization and greisenization processes occurred without volume changes in the granitic protholith, and the density differences of the altered rocks were caused by the mass variations along the alteration processes. The greisenization process caused a extensive loss of Na2O and K2O, while SiO2 showed a immobile behaviour in Gsl but was parcially removed in Gs2. The Al2O3 was depleted during the Gs2 formation but added in Gsl. The Fe2O3 (Fe total), Sn, S, volatiles LOl and F were the responsible by the mass increase at greisenization. In the Gsl, the chemical changes in the fiuids were caused by F activity decrease and fO2 increase during cooling. These changes also originated the differentiation between the ZT, in the inner portions of the fratures/conducts, and the ZS, nearest to surrounding gravite. The Gs3 was formed in more oxidizing conditions by F-poorer fiuids than those trapped in the ZS. The dissolution cavities generated during the episyenitization process increased the permeability of the altered rocks, providing an increase of fluid/rock ratios in the EpSK and Gs2 sites. The interaction between aqueous fluid and EpSK feldspar, during the Gs2 formation, caused a continuous salinity increase. The ZF was formed in the early stages of this interaction, at higher temperatures, while the ZC was originated by the more cold and saline, residual fluid. The latter was also trapped in the quartz filling cavities in the EpSK during the later silicification stage. In this way, the greisens and the potassic episyenites were generated from interactions among, at least, three fluids of seemingly independent origin, from a same protholith, in shallow crust conditions. The fO2, F activity and salinity variations, during the hydrothermal system cooling, and the contrast in fluid/rock ratios caused by permeability differences, were very important factors to greisen differentiation. These factors controlled greatly the fluids compositional changes, and caused the cassiterite and sulphides precipitation in the greisens and the Sn- S-enrichment during later greisenization of EpSK.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal do ParáPrograma de Pós-Graduação em Geologia e GeoquímicaUFPABrasilInstituto de GeociênciasCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::PETROLOGIACNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICAQuímica mineralMineralogiaGreisensEpi-sienitos potássicosGranito Água BoaMetalogeniaHidrotermalismoCráton AmazônicoMina Pitinga - AMProvíncia Estanífera de Pitinga - AMGreisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDALL'AGNOL, Robertohttp://lattes.cnpq.br/2158196443144675http://lattes.cnpq.br/4220176741850416BORGES, Régis Munhoz Krásinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPAORIGINALTese_GreisensEpisienitosPotassicos.pdfTese_GreisensEpisienitosPotassicos.pdfapplication/pdf89699509http://repositorio.ufpa.br/oai/bitstream/2011/8173/1/Tese_GreisensEpisienitosPotassicos.pdf22e7d0b5f3ac698524af92dcf777f5bcMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.ufpa.br/oai/bitstream/2011/8173/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.ufpa.br/oai/bitstream/2011/8173/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.ufpa.br/oai/bitstream/2011/8173/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://repositorio.ufpa.br/oai/bitstream/2011/8173/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55TEXTTese_GreisensEpisienitosPotassicos.pdf.txtTese_GreisensEpisienitosPotassicos.pdf.txtExtracted texttext/plain390http://repositorio.ufpa.br/oai/bitstream/2011/8173/6/Tese_GreisensEpisienitosPotassicos.pdf.txtc4f0458768f7ede91b11d32f72dc7672MD562011/81732019-03-27 13:31:06.686oai:repositorio.ufpa.br:2011/8173TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232019-03-27T16:31:06Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false
dc.title.pt_BR.fl_str_mv Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
title Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
spellingShingle Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
BORGES, Régis Munhoz Krás
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::PETROLOGIA
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICA
Química mineral
Mineralogia
Greisens
Epi-sienitos potássicos
Granito Água Boa
Metalogenia
Hidrotermalismo
Cráton Amazônico
Mina Pitinga - AM
Província Estanífera de Pitinga - AM
title_short Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
title_full Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
title_fullStr Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
title_full_unstemmed Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
title_sort Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas
author BORGES, Régis Munhoz Krás
author_facet BORGES, Régis Munhoz Krás
author_role author
dc.contributor.advisor1.fl_str_mv DALL'AGNOL, Roberto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2158196443144675
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4220176741850416
dc.contributor.author.fl_str_mv BORGES, Régis Munhoz Krás
contributor_str_mv DALL'AGNOL, Roberto
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::PETROLOGIA
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICA
topic CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::PETROLOGIA
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICA
Química mineral
Mineralogia
Greisens
Epi-sienitos potássicos
Granito Água Boa
Metalogenia
Hidrotermalismo
Cráton Amazônico
Mina Pitinga - AM
Província Estanífera de Pitinga - AM
dc.subject.por.fl_str_mv Química mineral
Mineralogia
Greisens
Epi-sienitos potássicos
Granito Água Boa
Metalogenia
Hidrotermalismo
Cráton Amazônico
Mina Pitinga - AM
Província Estanífera de Pitinga - AM
description Na borda oeste do pluton Água Boa, na mina Pitinga (AM), ocorrem três tipos de greisens estaníferos associados espacialmente à fácies granito rapakivi: greisen 1 (Gs1), constituído principalmente por quartzo, topázio, siderofilita marrom e esfalerita; greisen 2 (Gs2), formado essencialmente por quartzo, fengita e clorita; greisen 3 (Gs3), constituído essencialmente por quartzo, fluorita e fengita, com quantidades subordinadas de siderofilita verde. Além disso, associado ao Gs2, ocorre um epi-sienito potássico (EpSK), formado pela dessilicificação do granito rapakivi. Apesar de suas diferenças composicionais e petrográficas, os greisens e epi-sienitos se formaram a partir do mesmo protólito granítico, um hornblenda-biotita-álcali-feldspato-granito a sienogranito. O Gsl apresenta uma zonação interna definida pela predominância de determinados minerais. Assim, ao longo de um halo de alteração contínuo, a zona rica em siderofilita (ZS) está em contato com o granito greisenizado, enquanto que a zona rica em topázio (ZT) situa-se mais afastada do granito. A siderofilita marrom apresenta teores moderados em AI, e sua variação composicional ocorre pela substituição de Fe+2 por A1+3 e Li nos sítios octaédricos, com geração de vacâncias, e concomitante substituição de A1+3por Si+4nos sítios tetraédricos. No Gs2, as zonas mineralógicas estão separadas espacialmente, em níveis onde predomina a fengita (ZF) ou a clorita (ZC). A fengita apresenta um mecanismo evolutivo em que o viAl é substituído por Fe+2 nos sítios octaédricos, com enriquecimento acoplado de Si+4 às expensas de A1+3 nos sítios tetraédricos. Seus teores de Li calculado são ainda menores do que aqueles estimados para a siderofilita do Gs1. No Gs3, a siderofilita verde é composicionalmente mais rica em VIAl e mais pobre em F do que a siderofilita do Gsl, enquanto que a fengita subdivide-se em dois tipos composicionais: uma fengita mais aluminosa, pobre em Fe+2, e uma mais rica em F e Fe+2, que segue os mesmos trends evolutivos apresentados pela fengita do Gs2. A clorita dos três greisens é extremamente rica em Fe, do tipo dafnita. Na sua estrutura, a substituição de 'JIA' por cátions R+2 causa um aumento na ocupação tetraédrica do Si. As cloritas mais aluminosas apresentam as mais altas temperaturas de formação, segundo os geotermômetros clássicos propostos na literatura. Os greisens são resultantes de diferentes processos de interação entre três fluidos principais: (1) fluido aquo-carbônico de baixa salinidade, rico em F, com temperaturas iniciais entre 400° e 350°C, presente durante a formação do Gs1 e Gs3; (2) fluido aquoso de baixa salinidade, e temperatura ao redor de 300°C e que, ao longo de um processo contínuo de salinização, gera um fluido residual de salinidade moderada a alta, com temperaturas entre 200° e 100°C, presente durante a formação do Gs2 e no estágio de silicificação do EpSK; (3) fluido aquoso de baixa salinidade, com temperaturas entre 2000 e 150°C, e que interagiu com os outros dois fluidos, contribuindo, em diferentes graus, para a formação de praticamente todas as rochas hidrotermais. Os dois primeiros fluidos aparentemente têm origem ortomagmática, enquanto que o último tem características de fluido superficial (meteórico?). Além destes, considera-se que o fluido responsável pelo estágio inicial do processo de epi-sienitização não ficou registrado nas amostras estudadas. Estes fluidos foram aprisionados em condições de pressão ao redor de 1 Kb, compatível com níveis crustais rasos, como parece ser o caso dos granitos estaniferos de Pitinga. Tanto a epi-sienitização quanto a greisenização ocorreram sem mudanças no volume original do granito, enquanto as variações de massa decorrentes das transformações causaram as diferenças nas densidades das rochas alteradas. A greisenização causou uma grande remoção em Na2O e K2O, enquanto que SiO2 permaneceu imóvel no Gsl e foi parcialmente removido no Gs2. O Al2O3 sofreu perdas durante a formação do Gs2, mas foi parcialmente adicionado ao Gsl. Os responsáveis pelo aumento de massa durante a greisenização foram Fe2O3 (Fe total), Sn, S, voláteis (P.F.) e F. No Gsl, a diminuição da atividade do F e o aumento da fO2 durante o resfriamento, causaram mudanças químicas nos fluidos, e a conseqüente diferenciação entre a ZT, nas porções mais internas dos condutos/fraturas, e a ZS, mais próxima do granito encaixante. O Gs3 foi formado sob condições mais oxidantes e por fluidos mais pobres em F do que aqueles aprisionados na ZS. A geração de cavidades de dissolução durante a epi-sienitização aumentou a permeabilidade das rochas alteradas, propiciando o aumento das razões fluido-rocha no sitio de formação do EpSK e Gs2. A interação dos fluidos aquosos com os feldspatos do EpSK, durante a formação do Gs2, causou um aumento contínuo na sua salinidade. A ZF foi formada nos estágios mais precoces desta interação, sob temperaturas relativamente mais altas, enquanto que a ZC é um produto dos fluidos aquosos residuais, mais salinos e mais frios. Estes fluidos residuais também foram aprisionados no quartzo de preenchimento de cavidades no EpSK durante o processo de silicificação tardia. Desta forma, os greisens e epi-sienitos potássicos foram formados pela interação entre, pelo menos, três fluidos de origem aparentemente independente, a partir do mesmo protólito granítico, em condições de crosta rasa. As variações nas condições de fO2, atividade do F e salinidade, durante o resfriamento do sistema hidrotermal, e contrastes nas razões fluido-rocha causadas por diferenças de permeabilidade, foram fatores fundamentais para a diferenciação dos greisens. Estes fatores influenciaram sobremaneira as mudanças composicionais dos fluidos e foram responsáveis pela precipitação de cassiterita e sulfetos nos greisens, e pelo enriquecimento em Sn e S durante a greisenização tardia dos epi-sienitos potássicos.
publishDate 2002
dc.date.issued.fl_str_mv 2002-10-23
dc.date.accessioned.fl_str_mv 2017-04-17T16:26:56Z
dc.date.available.fl_str_mv 2017-04-17T16:26:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BORGES, Régis Munhoz Krás. Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas. Orientador: Roberto Dall'Agnol. 2002. 383 f. Tese (Doutorado em Geologia e Geoquímica) - Centro de Geociências, Universidade Federal do Pará, Belém, 2002. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/8173. Acesso em:.
dc.identifier.uri.fl_str_mv http://repositorio.ufpa.br/jspui/handle/2011/8173
identifier_str_mv BORGES, Régis Munhoz Krás. Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas. Orientador: Roberto Dall'Agnol. 2002. 383 f. Tese (Doutorado em Geologia e Geoquímica) - Centro de Geociências, Universidade Federal do Pará, Belém, 2002. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/8173. Acesso em:.
url http://repositorio.ufpa.br/jspui/handle/2011/8173
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pará
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Geologia e Geoquímica
dc.publisher.initials.fl_str_mv UFPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Geociências
publisher.none.fl_str_mv Universidade Federal do Pará
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPA
instname:Universidade Federal do Pará (UFPA)
instacron:UFPA
instname_str Universidade Federal do Pará (UFPA)
instacron_str UFPA
institution UFPA
reponame_str Repositório Institucional da UFPA
collection Repositório Institucional da UFPA
bitstream.url.fl_str_mv http://repositorio.ufpa.br/oai/bitstream/2011/8173/1/Tese_GreisensEpisienitosPotassicos.pdf
http://repositorio.ufpa.br/oai/bitstream/2011/8173/2/license_url
http://repositorio.ufpa.br/oai/bitstream/2011/8173/3/license_text
http://repositorio.ufpa.br/oai/bitstream/2011/8173/4/license_rdf
http://repositorio.ufpa.br/oai/bitstream/2011/8173/5/license.txt
http://repositorio.ufpa.br/oai/bitstream/2011/8173/6/Tese_GreisensEpisienitosPotassicos.pdf.txt
bitstream.checksum.fl_str_mv 22e7d0b5f3ac698524af92dcf777f5bc
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
43cd690d6a359e86c1fe3d5b7cba0c9b
c4f0458768f7ede91b11d32f72dc7672
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)
repository.mail.fl_str_mv riufpabc@ufpa.br
_version_ 1801771864413962240