Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento

Detalhes bibliográficos
Autor(a) principal: Justino, Lucas Rodrigo
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/5797
Resumo: The experiment was carried with the objective of investigating the supplementation of the enzyme xylanase individually or in combination with probiotic or symbiotic in the diet of pigs with reduction of the level of metabolizable energy . The variables studied were daily dietary intake (CRD), daily weight gain (GPD), feed conversion (CA), bone parameters, intestinal morphometry, intestinal microbiota diversity and economic viability of the experimental diets. Seventy five male and female piglets were used, with a mean initial weight of 25,024 ? 3,21 kg. The experimental design was a randomized block design, containing five treatments, five blocks totaling 25 experimental units composed of three pigs (two males and one female), with the following treatments: T1 = Reference diet; T2 = Basal diet with reduction of 100 kcal / kg of metabolizable energy; T3 = T2 + xylanase (100g / ton); T4 = T3 + probiotic (B subtilis and Bacillus Licheniformis) and T5 = T3 + symbiotic (B subtilis and Bacillus Licheniformis and Mananoligosaccharide). It was observed that the animals that received the T4 diet presented lower CRD (P <0.05) in the first experimental period (1-22 days) in comparison to those that received the T2 diet. In the second experimental period (23-30 days) there was no significant difference (P> 0.05) between treatments for any of the performance variables. In the total period (0-30 days) it was observed that T2 resulted in worsening of feed conversion in relation to T4, and no significant differences were observed between these treatments and the others. The T5 diet resulted in a higher ratio of villus height: crypt depths in the jejunum compared to T2. In relation to the microbial diversity of the cecal content, the relative abundance (% of OTUs) for the Firmicutes, Actinobacteria and Proteobacteria phylae independent of the treatment were observed at phylum level. While at the family level the greatest abundance was for Lactobacillaceae, Steptococcaceae and Clostrideacea. Growth pigs rations with reduction of 100 kcal/kg of ME and supplemented with xylanase, probiotic and simbiotic resulted in similar performance compared with the results of pigs receiving reference ration. The xylanase plus probiotic improved the feed convertion compared to the energetic reduction diet without these additives. The xylanase and symbiotic combination prooted the biggest villus height:crypth depth ratio. The joint use of xylanase and probiotic results in best economic efficiency and best cost ratio
id UFRRJ-1_54b0c006d4b0ca8411e3dac113009469
oai_identifier_str oai:localhost:jspui/5797
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Lima, Cristina Amorim Ribeiro de449.983.176-87http://lattes.cnpq.br/6546054162092853Lima, Cristina Amorim Ribeiro de449.983.176-87http://lattes.cnpq.br/6546054162092853Vieira, Antonio Assishttp://lattes.cnpq.br/0307905746544873Cardoso, Ver?nica da Silvahttp://lattes.cnpq.br/0211928200714456117.045.076-85http://lattes.cnpq.br/8419528791276997Justino, Lucas Rodrigo2022-07-13T11:35:40Z2019-08-02JUSTINO, Lucas Rodrigo. Xilanase, probi?tico e simbi?tico em dietas de su?nos em crescimento. 2019. 43 f. Disserta??o (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.https://tede.ufrrj.br/jspui/handle/jspui/5797The experiment was carried with the objective of investigating the supplementation of the enzyme xylanase individually or in combination with probiotic or symbiotic in the diet of pigs with reduction of the level of metabolizable energy . The variables studied were daily dietary intake (CRD), daily weight gain (GPD), feed conversion (CA), bone parameters, intestinal morphometry, intestinal microbiota diversity and economic viability of the experimental diets. Seventy five male and female piglets were used, with a mean initial weight of 25,024 ? 3,21 kg. The experimental design was a randomized block design, containing five treatments, five blocks totaling 25 experimental units composed of three pigs (two males and one female), with the following treatments: T1 = Reference diet; T2 = Basal diet with reduction of 100 kcal / kg of metabolizable energy; T3 = T2 + xylanase (100g / ton); T4 = T3 + probiotic (B subtilis and Bacillus Licheniformis) and T5 = T3 + symbiotic (B subtilis and Bacillus Licheniformis and Mananoligosaccharide). It was observed that the animals that received the T4 diet presented lower CRD (P <0.05) in the first experimental period (1-22 days) in comparison to those that received the T2 diet. In the second experimental period (23-30 days) there was no significant difference (P> 0.05) between treatments for any of the performance variables. In the total period (0-30 days) it was observed that T2 resulted in worsening of feed conversion in relation to T4, and no significant differences were observed between these treatments and the others. The T5 diet resulted in a higher ratio of villus height: crypt depths in the jejunum compared to T2. In relation to the microbial diversity of the cecal content, the relative abundance (% of OTUs) for the Firmicutes, Actinobacteria and Proteobacteria phylae independent of the treatment were observed at phylum level. While at the family level the greatest abundance was for Lactobacillaceae, Steptococcaceae and Clostrideacea. Growth pigs rations with reduction of 100 kcal/kg of ME and supplemented with xylanase, probiotic and simbiotic resulted in similar performance compared with the results of pigs receiving reference ration. The xylanase plus probiotic improved the feed convertion compared to the energetic reduction diet without these additives. The xylanase and symbiotic combination prooted the biggest villus height:crypth depth ratio. The joint use of xylanase and probiotic results in best economic efficiency and best cost ratioO experimento foi realizado com o objetivo de investigar a suplementa??o da enzima xilanase individualmente, ou associada com probi?tico ou simbi?tico na dieta de su?nos com redu??o do valor de energia metaboliz?vel. As vari?veis estudadas foram: consumo de ra??o di?rio (CRD), ganho de peso di?rio (GPD), convers?o alimentar (CA), par?metros ?sseos, morfometria intestinal, diversidade da microbiota intestinal e viabilidade econ?mica das dietas experimentais. Foram utilizados 75 leit?es machos castrados e f?meas, com peso m?dio inicial de 25,024 ? 3, 21 kg. O delineamento experimental foi o de blocos ao acaso, contendo cinco tratamentos, cinco blocos totalizando 25 unidades experimentais compostas por tr?s su?nos (dois machos e uma f?mea), sendo os tratamentos: T1= Dieta refer?ncia; T2= Dieta basal com redu??o de 100 kcal/kg de energia metaboliz?vel; T3= T2 + xilanase (100g/ton.); T4= T3 + probi?tico (B subtilis e Bacillus Licheniformis) e T5= T3 + simbi?tico (B subtilis e Bacillus Licheniformis e mananoligossacar?deo). Os animais que receberam a dieta T4 apresentaram menor CRD (P<0,05) no primeiro per?odo experimental (1-22 dias) em rela??o ?queles receberam a dieta T2. No segundo per?odo experimental (23-30 dias) n?o houve diferen?a significativa (P>0,05) para as vari?veis de desempenho. J? no per?odo total (1-30 dias) foi observado que o T2 resultou em piora (P<0,05) da convers?o alimentar em rela??o ao T4, n?o sendo observadas diferen?as significativas entre estes tratamentos e os demais. A dieta T5 resultou em maior rela??o altura das vilosidades: profundidades das criptas no jejuno em compara??o ao T2. Em rela??o ? diversidade microbiana do conte?do cecal, foi constatada maior abund?ncia relativa (% de UTOs) para os filos Firmicutes, Actinobact?ria e Proteobacteria independente do tratamento. As fam?lias mais abundantes foram Lactobacillaceae, Steptococcaceae e Clostrideacea. Ra??es de su?nos em crescimento com redu??o de 100 kcal/kg de EM e suplementadas com xilanase, probi?tico e simbi?tico resultaram em par?metros de desempenho semelhantes quando comparadas aos resultados dos su?nos que receberam ra??o refer?ncia. A utiliza??o de xilanase aliada ao probi?tico na ra??o melhorou a convers?o alimentar em rela??o ? dieta com redu??o energ?tica sem estes aditivos. A combina??o de xilanase e simbi?tico promoveu uma maior rela??o altura das vilosidades: profundidade das criptas. A utiliza??o conjunta de xilanase e probi?tico resultou em melhor ?ndice de efici?ncia econ?mica e melhor ?ndice de custoSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-07-13T11:35:40Z No. of bitstreams: 1 2019 - Lucas Rodrigo Justino.pdf: 3005547 bytes, checksum: 745db939a346dba5dec4da33e4db2b03 (MD5)Made available in DSpace on 2022-07-13T11:35:40Z (GMT). No. of bitstreams: 1 2019 - Lucas Rodrigo Justino.pdf: 3005547 bytes, checksum: 745db939a346dba5dec4da33e4db2b03 (MD5) Previous issue date: 2019-08-02CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/69900/2019%20-%20Lucas%20Rodrigo%20Justino.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em ZootecniaUFRRJBrasilInstituto de ZootecniaADEOLA, O.; COWIESON, A.J.; BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science, v. 89, p. 3189-3218, 2011. ALMEIDA, L.M.; PANISSON, J.C.; Bonardi, A.J.K.; Massuquetto, A.; Maiorka, A; Scandolera, A.J.; Adi??o de simbi?tico em ra??o de leit?es com deafio nutricional no per?odo de creche. Archives of Veterinary Science, v.22, n.3, p.57-65, 2017. AWAD, W.; GHAREEB, K.; JOSEF B?HM, J. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Synbiotic Containing Enterococcus faecium and Oligosaccharides. International Journal of Molecular Sciences, v.9, p.2205-2216, 2008. BARKO, P.C.; MCMICHAEL, M.A.; SWANSON, K.S.; WILLIAMS, D.A. The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, v.32, p. 9-25, 2018. BEDFORD, M. R.; PARTRIDGE, G.G. Enzymes in farm animal nutrition, 2nd edition. 2. ed. Wallingford: CABI, 2010. BELLAVER, C.; FIALHO, E. T.; PROTAS, J. F. S.; GOMES, P. C. Rad?cula de malte na alimenta??o de su?nos em crescimento e termina??o. Pesquisa Agropecu?ria Brasileira, v.20, n.8, p.969-74, 1985. BON, M.L.; DAVIES, H.E.; GLYNN, C.; THOMPSON, C.; MADDEN, M.; WISEMAN, J.; DODD, C.E.R.; HURDIDGE, L.; PAYNE, G.; TREUT, Y.L.; CRAIGON, J.; T?TEMEYER, S.; MELLITS, K.H. Influence of probiotics on gut health in the weaned pig. Livestock Science, v. 133, p. 179?181, 2010. BRITO, J.M.; FERREIRA, A.H.C.; J?NIOR, H.A.S.; ARARIPE, M.N.B.A.; JO?O BATISTA LOPES3, DUARTE, A.R.; CARDOSO, E.S.; RODRIGUES, V.L. Probi?ticos, prebi?ticos e simbi?ticos na alimenta??o de n?o-ruminantes ? Revis?o. Revista Eletr?nica Nutritime, v.10, n.4, p. 2525 ? 2545, 2013. CAMPESTRINI, E.; SILVA, V.T.M.; APPELT, M.D. Utiliza??o de enzimas na alimenta??o animal. Revista Eletr?nica Nutritime, v.2, n.6, p.254-267, 2005. CANTARELLI, V.S.; FIALHO, E.T.; ALMEIDA, E.C.; ZANGERONIMO, M.G.; AMARAL, N.O.; LIMA, J.A.F. Caracter?sticas da carca?a e viabilidade econ?mica do uso de cloridrato de ractopamina para su?nos em termina??o com alimenta??o ? vontade ou restrita. lli et al. Ci?ncia Rural, v.39, n.3, 2009. CARDOSO, M.R.I.; Interfer?ncia da microbiota na sa?de intestinal: intera??o com antimicrobianos. In: Simp?sio Brasil Sul de Suinocultura e Brasil Sul Pig Fair, 11? e 10?, 2018, Santa Catarina. Anais ... Chapec?: Embrapa Su?nos e Aves, 2018. 75-80 p. CELI, P.; COWIESON, A.J.; FRU-NJI, F.; STEINERT, R.E.; KLUENTERB, A.-M.; VERLHACD, V. Gastrointestinal functionality in animal nutrition and health: New 36 opportunities for sustainable animal production. Animal Feed Science and Technology, v. 234, p. 88?100, 2017. CHAMONE, J.M.A.; MELO, M.T.P.; AROUCA, C.L.C.; BARBOSA, M.M.; SOUZA, F.A.; DOS SANTOS, D. Fisiologia digestiva de leit?es. Revista Eletr?nica Nutritime v.7, n.5, p.1353-1363, 2010. CHEN, H.; MAO, X.B.; HE, J.; YU, B.; HUANG, Z.Q.; YU, J.; ZHENG, P.; CHEN, D.W. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, v. 110, p. 1837?1848, 2013. CHEN, H.; MAO, X.B.; CHE, L.Q.; YU, B.; HE, J.; YU, J.; HAN, G.Q.; HUANG, Z.Q.; ZHENG, P.; CHEN, D.W. Impact of fiber types on gut microbiota, gut environment andgut function in fattening pigs. Animal Feed Science and Technology, v. 195, p. 101-111, 2014. CHO, J.H.; KIM, I.H. Effects of Beta Mannanase and Xylanase Supplementation in Low Energy Density Diets on Performances, Nutrient Digestibility, Blood Profiles and Meat Quality in Finishing Pigs. Asian Journal of Animal and Veterinary Advances, v. 8 (4), p. 622-630, 2013. CHRISTOFF, A. P.; SEREIA, A. F. R; BOBERG, D. R; MORAES, R. L. V.; OLIVEIRA, L. F. V. Bacterial identification through accurate library preparation and high-throughput sequencing. Florian?polis: Neoprospecta Microbiome Technologies, Sa, 2017. 5 p. DOWARAH, R.; VERMA, A.K.; AGARWAL, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Animal Nutrition, v.3, p.1-6, 2017. DOWARAH, R.; VERMA, A.K.; AGARWAL, N.; PATEL, B.H.M.; SINGH, P.; Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livestock Science, v.195, p. 74-79, 2017. FAO. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Gidelines for the evaluation of probiotics in food. 2002; 30.04?01.05.2002, London, Ontario, Kanada. FERREIRA, D.F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ci?ncia & Agrotecnologia, v.38, n.2, p.109-112, 2014. FIALHO, E. T.; BARBOSA, O.; FERREIRA, A. S.; GOMES, P. C.; GIROTTO, A. F. Utiliza??o da cevada suplementada com ?leo de soja para su?nos em crescimento e termina??o. Pesquisa Agropecu?ria Brasileira, v. 27, p. 1467-1475, 1992. FOUHSE, J.M.; ZIJLSTRA, R.T.; WILLING, B.P. The role of gut microbiota in the health and disease of pigs. Animal Frontiers, v.6, n.3, p. 30-36, 2016. GIANNENAS, I.; DOUKASB, D.; KARAMOUTSIOS, A.; TZORA, A.; BONOS, E.; SKOUFOS, I.; TSINAS, A.; CHRISTAKI, E.; TONTIS, D.; FLOROU-PANERI, P. Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte 37 subpopulations of fattening pigs. Animal Feed Science and Technology, v. 220, p. 159-167, 2016. HAMASALIM, H.J. Synbiotic as Feed Additives Relating to Animal Health and Performance. Advances in Microbiology, v.6, p. 288-302, 2016. HYEUN BUM KIM, H. B.; ISAACSON, R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, v.177, p. 242?251, 2015. ISAACSON, R.; KIM, H.B. The intestinal microbiome of the pig. Animal Health Research Reviews, v.13, n.1, p.100?109, 2012. JHA, R.; BERRECOSO, J.F.D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, v. 212, p. 18-26, 2016. J?RGENSEN, J.N.; LAGUNA, J.S.; MILL?N, C.;CASABUENA, O.; GRACIA, M.I. Effects of a Bacillus-based probiotic and dietary energycontent on the performance and nutrient digestibility ofwean to finish pigs. Animal Feed Science and Technology, v. 221, p. 54-61, 2016. KIARIE, E.; OWUSU-ASIEDU, A.; P?RON, A.; SIMMINS, P.H.; NYACHOTI, C.M. Efficacy of xilanase and b-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science, v. 148, p. 129?133, 2012. KICH, J.D.; MENEGUZZI, M. Interfer?ncia da microbiota na sa?de intestinal: Eubiose vs Disbiose. In: Simp?sio Brasil Sul de Suinocultura e Brasil Sul Pig Fair, 11? e 10?, 2018, Santa Catarina. Anais ... Chapec?: Embrapa Su?nos e Aves, 2018. 70-74 p. KLASING, K.C. Nutrition and the immune system. British Poultry Science, v.48, n.5, p. 525-537, 2007. KNUDSEN, K.E.B.; HEDEMANN, M.S.; L?RKE, H.N.; The role of carbohydrates in intestinal health of pigs. Animal Feed Science and Technology, v.173, p. 41-53, 2012. KONSTANTINOV, S.R.; FAVIER, C.F.; ZHU, W.Y.; WILLIAMS, B.A.; KL??, J.; SOUFFRANT, W.B.; DE VOS, W.M.; AKKERMANS, A.DL.; SMIDT, H. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Animal Research, v.53, p. 317?324, 2004. LEE, K.Y.; BALASUBRAMANIANA, B.; KIM, J.K.; KIM, I.H.; Dietary inclusion of xylanase improves growth performance, apparent total tract nutrient digestibility, apparent ileal digestibility of nutrients and amino acids and alters gut microbiota in growing pigs. Animal Feed Science and Technology, v.235, p. 105?109, 2018. LESER, T.D.; AMENUVOR, J.Z.; JENSEN, T.K.; LINDECRONA, R.H.; BOYE, M.; M?LLER, K. Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited. Applied and Environmental Microbiology, v.68, n.2, p. 673?690, 2002. 38 LIAO, S.F.; NYACHOTI, M. Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, v. 3, p.331- 343, 2017. LINDBERG, J. E,; LYBERG, K.; SANDS, J. Influence of phytase and xylanase supplementation of a wheat-based diet on ileal and total tract digestibility in growing pigs. Livestock Science,v.109, p. 268-270, 2007. LIU, G.; YU, L.; MART?NEZ, Y.; REN, W.; NI, H.; AL-DHABI, N.A.; DURAIPANDIYAN, V.; YIN, Y. Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets. Oxidative Medicine and Cellular Longevity, p.0-7, 2017, In: https://doi.org/10.1155/2017/3967439. LIU, Q.; ZHANG, W.M.; ZHANG, Z.J.; ZHANG, Y.J.; ZHANG, Y.W.; CHEN, L.; ZHUANG, S. Effect of fiber source and enzyme addition on the apparentdigestibility of nutrients and physicochemical properties ofdigesta in cannulated growing pigs. Animal Feed Science and Technology, v. 216, p. 262?272, 2016. LIU, W.C.; YE, M.; LIAO, J.H.; ZHAO, Z.H.; KIM, I.H.; AN, L.L. Application of complex probiotics in swine nutrition ? a review. Annals of Animal Science, vol.18, n. 2, p. 335?350, 2018. MARKOWIAK, P.; ?LI?EWSKA, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog, p. 10:21, 2018. In https://doi.org/10.1186/s13099-018-0250-0. MENIN, A.; RECK, C.; SOUZA, D.; KLEIN, C.; VAZ, E. Agentes bacterianos enteropatog?nicos em su?nos de diferentes faixas et?rias e perfil de resist?ncia a antimicrobianos de cepas de Escherichia coli e Salmonella spp. Ci?ncia Rural, v. 38, n.6, p.1687-1693, 2008. MILTENBURG,G. Extratos herbais como substitutivo de antimicrobianos na alimenta??o animal. In: SIMP?SIO SOBRE ADITIVOS ALTERNATIVOS NA NUTRI??O ANIMAL, 19., 2000, Campinas. Anais ...Campinas: CNBA, 2000. p.87-100. MOCHERLA, V.; SURYANARAYANA, A.N. Performance and Total tract Digestibility of Probiotic, Xylanase and Phytase in the Diets of Grower Pigs. Journal of Agriculture and Sustainability, v. 2 , n. 1, p. 86-97, 2013. MOREIRA, I.;MOURINHO, F.L.;CARVALHO, P.L.O.; PAIANO, D. ; PIANO, L.M .; JUNIOR, I.S.K. Avalia??o nutricional da casca de soja com ou sem complexo enzim?tico na alimenta??o de leit?es na fase inicial. Revista Brasileira de Zootecnia., v.38, n.12, p.2408-2416, 2009. NASCIMENTO, P.P. Disserta??o: Utiliza??o de complexo enzim?tico em ra??es contendo milho ou sorgo para leit?es em fase de creche. Mestrado em Ci?ncia Animal, Universidade Federal de Goi?s, Goi?nia - GO, 2010, 81 p; NELSON, D. L.; COX, M. M. Princ?pios de bioqu?mica de Lehninger. 5. ed. Porto Alegre: Artmed, 2011. 39 NDOU, S.P.; KIARIE, E.; AGYEKUMA, A.K.; HEO, J.M.; ROMERO, L.F.; ARENTD, S.; LORENTSEN, R.; NYACHOTI, C.M. Comparative efficacy of xylanases on growth performanceand digestibility in growing pigs fed wheat and wheat bran-or corn and corn DDGS-based diets supplemented with phytase. Animal Feed Science and Technology, v. 209, p. 230-239, 2015. NORTEY, T.N.; PATIENCE, J.F.; SANDS, J.S.; ZIJLSTRA, R.T. Xylanase supplementation improves energy digestibility of wheat by-products in grower pigs. Livestock Science, v.109, p. 96?99, 2007. OETTING, L.L.; UTIYAMA,C.E.; GIANI, P.A.; RUIZ, U.S.; MIYADA, V.S. Efeitos de extratos vegetais e antimicrobianos sobre a digestibilidade aparente, o desempenho, a morfometria dos ?rg?os e a histologia intestinal de leit?es rec?m-desmamados. Revista Brasileira de Zootecnia, v.35, n.4, p.1389-1397, 2006. OLIVEIRA, H.R.V. Disserta??o: Efeito da Xilanase Isolada ou Associada ? Levedura na Dieta de Leit?es a Base de Sorgo sobre o Desempenho e a Microbiota Intestinal. Mestrado em Agronomia, Universidade Estadual do Norte do Paran?, Bandeirantes ? PR, 2018, 48 p; O?SHEA, C.J.; MC ALPINE, P.O.; SOLAN, P.; CURRAN, T.; VARLEY, P.F.; WALSH, A.M.; DOHERTY, J.V.O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower?finisher pigs. Animal Feed Science and Technology, v.189, p. 88? 97, 2014. OWUSU-ASIEDU, A.; SIMMINS, P.H.; BRUFAU, J.; LIZARDO, R.; P?RON, A. Effect of xylanase and ?-glucanase on growth performance and nutrient digestibility in piglets fed wheat?barley-based diets. Livestock Science, v. 134, p.76?78, 2010. PAIX?O, L.A.; CASTRO, F.F.S. A coloniza??o da microbiota intestinal e sua influ?ncia na sa?de do hospedeiro. Universitas: Ci?ncias da Sa?de, v. 14, n. 1, p. 85-96, 2016. PASCOAL, L. A. F.; SILVA, L. P. G.; MIRANDA, E. C.; MARTINS, T. D. D.; THOMAZ, M. C.; LAMENHA, M. I. A.; ALMEIDA, D. H. Complexo enzim?tico em dietas simples sobre os par?metros s?ricos e a morfologia intestinal de leit?es. Revista Brasileira de Sa?de e Produ??o Animal, v.9, n.1, p. 117-129, 2008. PAJARILLO, E.A.B.; CHAE, J.P.; BALOLONG, M,P.; KIM, H.B.; KANG, D.K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of General and Applied Microbiology, v. 60, p. 140?146, 2014. PASSOS, A.A.; PARK, I.; FERKET, P.; VON HEIMENDAHL, E.; KIM, S.W. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Animal Nutrition, v.1, p. 19-23, 2015. PLUSKE, J.R.; TURPIN, D.L.; KIM, J.C.; Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, v.4, p. 187-196, 2018. 40 RAI, V.; YADAV, B.; LAKHANI, G. P.; Application of Probiotic and Prebiotic in Animals Production: A Review. Environment & Ecology, v.31, n.2B, p.873-876, 2013. RICHARDS, J. D.; GONG, J.; DE LANGE, C. F. M. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science, v.85, p. 421?435, 2005. ROBLES-HUAYNATE, R. A.; THOMAZ, M. C.; SANTANA, ?. E.; MASSON, G.C.I.H.; AMORIM, A.B.; SILVA, S. Z.; RUIZ, U.S.; WATANABE, P.H.; BUDI?O, F. E.L. Effect of the probiotic addition in diets of weaned piglets on the characteristics of the digesting system and of performance. Revista Brasileira de Sa?de e Produ??o Animal, v.14, n.1, p.248-258, 2013. ROSS, G.R.; GUSILS, C.; OLISZEWSKI, R.; HOLGADO, S.C.; GONZ?LEZ, S.N. Effects of probiotic administration in swine. Journal of Bioscience and Bioengineering, vol. 109, n. 6, p.545?549, 2010. ROSTAGNO, H.S.; ALBINO, L. F. T.; HANNAS, M. I.; DONZELE, J.L.; SAKOMURA, N. K.; PERAZZO, F. G.; SARAIVA, A.; TEIXEIRA, M.L.; RODRIGUES, P. B.; OLIVEIRA, R. F.; BARRETO, S.L. T.; BRITO, C. O. 2017. Tabelas Brasileiras para Aves e Su?nos: Composi??o de Alimentos e Exig?ncias Nutricionais. 3. ed. Vi?osa, MG, 2017. SAKOMURA, N.K.; ROSTAGNO, H.S. M?todos de pesquisa em nutri??o de monog?stricos. Jaboticabal, SP: Editora Funep, 2007. 286 p. SANTANA, A. L. A.; CARVALHO, P. L. O.; CRISTOFORI, E. C.; CHAMBO, P. C. S.; BARBIZAN, M. NUNES, R. V.; GREGORY, C. R.; GENOVA, J. L. Supplementation of pig diets in the growth and termination phases with different calcium sources. Tropical Animal Health Production, 2017 doi.org/10.1007/s11250-017-1456-8 SATTLER, V.A.; BAYER, K.; SCHATZMAYR, G.; HASLBERGER, A.G.; KLOSE, V. Impact of a probiotic, inulin, or their combination on the piglets? microbiota at different intestinal locations. Beneficial Microbes, v.6, n.4, p. 473-483, 2015; SEEDOR, J.G. The biophosphanate alendronate (MK-217) inhibit bone loss due to ovariectomy in rats. Journal of Bone and Mineral Research, v. 4, p. 265-270, 1993. SILVA, D. J.; QUEIROZ, A. C. An?lise de alimentos: m?todos qu?micos e biol?gicos. 3. ed. Vi?osa: UFV, 2006. 235 p. SHE, Y,; LIU, Y.; V, C. G.; STEIN, H.H. Effects of graded levels of an Escherichia coli phytase on growth performance, apparent total tract digestibility of phosphorus, and on bone parameters of weanling pigs fed phosphorus-deficient corn-soybean meal based diets. Animal feed Science and technology, p.102-109, 2017. SILVA, D. J.; QUEIROZ, A. C. An?lise de alimentos (m?todos qu?micos e biol?gicos). Vi?osa, MG: Editora UFV, 2001. 235p. 41 SILVA, S.Z.; THOMAZ, M.C; WATANABE, P.H.; Rizal Alcides ROBLES HUAYNATE, A.; RUIZ,U.S.; PASCOAL, L.A.F.; SANTOS, V.M.; MASSON, G.C.I.H. Mananoligossacar?deo em dietas para leit?es desmamados. Brazilian Journal of Veterinary Research and Animal Science, v. 49, n. 2, p. 102-110, 2012. STERK , A.;. VERDONK, J.M.A.J.; MUL, A.J.; SOENEN, B.; BEZEN?ON, M.L.; FREHNER, M.; LOSA, R. Effect of xylanase supplementation to a cereal-based diet on the apparent faecal digestibility in weanling piglets. Livestock Science, v.108, p. 269?271, 2007. UNNO, T.; KIM, J.; GUEVARRA, R.B.; NGUYEN, S.G. Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota. Journal of Microbiology and Biotechnology , v.25, n.4, p.431- 438, 2015. UPADHAYA, S.D.; KIM, S.C.; VALIENTES, R.A.; KIM, I.H.; The Effect of Bacillus based Feed Additive on Growth Performance, Nutrient Digestibility, Fecal Gas Emission, and Pen Cleanup Characteristics of Growing-Finishing Pigs. Asian-Australasian Journal of Animal Sciences, v.28, n.7, p. 999-1005. VAN LAERE, K.M.J.; HARTEMINK, R.; BOSVELD, M.; HENK A. SCHOLS, H.A.;VORAGEN, A.G.J. Fermentation of Plant Cell Wall Derived Polysaccharides and Their Corresponding Oligosaccharides by Intestinal Bacteria. J. Journal of Agricultural and Food Chemistry, v. 48, p.1644-1652, 2000. YIN , Y.L.; BAIDOOB, S.K.; SCHULZEC, H.; SIMMINS, P.H. Effects of supplementing iets containing hulless barley varieties having different levels of non-starch polysaccharides with b-glucanase and xylanase on the physiological status ofthe gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Production Sciencen, v.71, p. 97?107, 2001. YIRGA, H. The Use of Probiotics in Animal Nutrition. Journal of Probiotics and Health, v.3, n. 2, p. 1-10, 2015. WANG Y. Prebiotics: present and future in food science and technology. Food Research International, v.42, p. 8-12, 2009. WEISS, E.; EKLUND1, M.; SEMASKAITE2, A.; URBAITYTE1, R.; METZLER-ZEBELI3, B.; SAUER1, N.; RATRIYANTO4, A.; GRUZAUSKAS2, R.; MOSENTHIN, R. Combinations of feed additives affect ileal fibre digestibility and bacterial numbers in ileal digesta of piglets. Czech Journal of Animal Science, v. 58, n. 8, p. 351-359, 2013. ZEINELDIN, M.; ALDRIDGE, B.; BLAIR, B.; KANCER, K.; LOWE, J. Impact of parenteral antimicrobial administration on the structure and diversity of the fecal microbiota of growing pigs. Microbial pathogenesis, v. 118, p. 220-229, 2018. ZENG, Z.K.; LI, Q.Y.; TIAN, Q.Y.; XU, Y.T.; PIAO, X.S. The combination of carbohydrases and phytase to improve nutritional value and non-starch polysaccharides degradation for growing pigs fed diets with or without wheat bran. Animal Feed Science and Technology, v.235, p. 138?146, 2018. 42 ZHAO, W.; WANG, Y.; LIU, S.; HUANG, J.; ZHAI, Z.; HE, C.; DING, J.; WANG, J.; WANG, H.; FAN, W.; ZHAO, J.; MENG, H. The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. Plos One, v.10, n.2, p. 1-13, 2015. ZHANG, Y.J.; LIU, Q.; ZHANG, W.M.; ZHANG, Z.J.; WANG, W.L.; ZHUANG, S. Gastrointestinal microbial diversity and short-chain fatty acid production in pigs fed different fibrous diets with or without cell wall-degrading enzyme supplementation. Livestock Science, v.207, p. 105?116, 2018. ZHANG, Z.;TUN, H.M.; LI, R.; GONZALEZ, B.J.M.; KEENES, H.C.; NYACHOTI, C.M.; KIARIE, E.; KHAFIPOUR, E. Impact of xylanases on gut microbiota of growing pigs fed corn- or wheat-based diets. Animal Nutrition, v.4, p. 339-350, 2018.AditivosDesempenhoManejo nutricionalMicrobiotaSa?de intestinalAdditivesIntestinal healthMicrobiotaNutritional managementPerformanceZootecniaXilanase, probi?tico e simbi?tico em dieta de su?nos em crescimentoXilanase, Probiotic and Symbiotic in Growing Pork Dietsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Lucas Rodrigo Justino.pdf.jpg2019 - Lucas Rodrigo Justino.pdf.jpgimage/jpeg3698http://localhost:8080/tede/bitstream/jspui/5797/4/2019+-+Lucas+Rodrigo+Justino.pdf.jpg26cec0730b93a4cadc89cf0a1e313d92MD54TEXT2019 - Lucas Rodrigo Justino.pdf.txt2019 - Lucas Rodrigo Justino.pdf.txttext/plain134444http://localhost:8080/tede/bitstream/jspui/5797/3/2019+-+Lucas+Rodrigo+Justino.pdf.txt135ae38e0119dcb68bfc6cc8067888e6MD53ORIGINAL2019 - Lucas Rodrigo Justino.pdf2019 - Lucas Rodrigo Justino.pdfapplication/pdf3005547http://localhost:8080/tede/bitstream/jspui/5797/2/2019+-+Lucas+Rodrigo+Justino.pdf745db939a346dba5dec4da33e4db2b03MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5797/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/57972022-08-07 19:29:17.034oai:localhost:jspui/5797Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-08-07T22:29:17Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
dc.title.alternative.eng.fl_str_mv Xilanase, Probiotic and Symbiotic in Growing Pork Diets
title Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
spellingShingle Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
Justino, Lucas Rodrigo
Aditivos
Desempenho
Manejo nutricional
Microbiota
Sa?de intestinal
Additives
Intestinal health
Microbiota
Nutritional management
Performance
Zootecnia
title_short Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
title_full Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
title_fullStr Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
title_full_unstemmed Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
title_sort Xilanase, probi?tico e simbi?tico em dieta de su?nos em crescimento
author Justino, Lucas Rodrigo
author_facet Justino, Lucas Rodrigo
author_role author
dc.contributor.advisor1.fl_str_mv Lima, Cristina Amorim Ribeiro de
dc.contributor.advisor1ID.fl_str_mv 449.983.176-87
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6546054162092853
dc.contributor.referee1.fl_str_mv Lima, Cristina Amorim Ribeiro de
dc.contributor.referee1ID.fl_str_mv 449.983.176-87
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6546054162092853
dc.contributor.referee2.fl_str_mv Vieira, Antonio Assis
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0307905746544873
dc.contributor.referee3.fl_str_mv Cardoso, Ver?nica da Silva
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/0211928200714456
dc.contributor.authorID.fl_str_mv 117.045.076-85
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8419528791276997
dc.contributor.author.fl_str_mv Justino, Lucas Rodrigo
contributor_str_mv Lima, Cristina Amorim Ribeiro de
Lima, Cristina Amorim Ribeiro de
Vieira, Antonio Assis
Cardoso, Ver?nica da Silva
dc.subject.por.fl_str_mv Aditivos
Desempenho
Manejo nutricional
Microbiota
Sa?de intestinal
topic Aditivos
Desempenho
Manejo nutricional
Microbiota
Sa?de intestinal
Additives
Intestinal health
Microbiota
Nutritional management
Performance
Zootecnia
dc.subject.eng.fl_str_mv Additives
Intestinal health
Microbiota
Nutritional management
Performance
dc.subject.cnpq.fl_str_mv Zootecnia
description The experiment was carried with the objective of investigating the supplementation of the enzyme xylanase individually or in combination with probiotic or symbiotic in the diet of pigs with reduction of the level of metabolizable energy . The variables studied were daily dietary intake (CRD), daily weight gain (GPD), feed conversion (CA), bone parameters, intestinal morphometry, intestinal microbiota diversity and economic viability of the experimental diets. Seventy five male and female piglets were used, with a mean initial weight of 25,024 ? 3,21 kg. The experimental design was a randomized block design, containing five treatments, five blocks totaling 25 experimental units composed of three pigs (two males and one female), with the following treatments: T1 = Reference diet; T2 = Basal diet with reduction of 100 kcal / kg of metabolizable energy; T3 = T2 + xylanase (100g / ton); T4 = T3 + probiotic (B subtilis and Bacillus Licheniformis) and T5 = T3 + symbiotic (B subtilis and Bacillus Licheniformis and Mananoligosaccharide). It was observed that the animals that received the T4 diet presented lower CRD (P <0.05) in the first experimental period (1-22 days) in comparison to those that received the T2 diet. In the second experimental period (23-30 days) there was no significant difference (P> 0.05) between treatments for any of the performance variables. In the total period (0-30 days) it was observed that T2 resulted in worsening of feed conversion in relation to T4, and no significant differences were observed between these treatments and the others. The T5 diet resulted in a higher ratio of villus height: crypt depths in the jejunum compared to T2. In relation to the microbial diversity of the cecal content, the relative abundance (% of OTUs) for the Firmicutes, Actinobacteria and Proteobacteria phylae independent of the treatment were observed at phylum level. While at the family level the greatest abundance was for Lactobacillaceae, Steptococcaceae and Clostrideacea. Growth pigs rations with reduction of 100 kcal/kg of ME and supplemented with xylanase, probiotic and simbiotic resulted in similar performance compared with the results of pigs receiving reference ration. The xylanase plus probiotic improved the feed convertion compared to the energetic reduction diet without these additives. The xylanase and symbiotic combination prooted the biggest villus height:crypth depth ratio. The joint use of xylanase and probiotic results in best economic efficiency and best cost ratio
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-02
dc.date.accessioned.fl_str_mv 2022-07-13T11:35:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JUSTINO, Lucas Rodrigo. Xilanase, probi?tico e simbi?tico em dietas de su?nos em crescimento. 2019. 43 f. Disserta??o (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5797
identifier_str_mv JUSTINO, Lucas Rodrigo. Xilanase, probi?tico e simbi?tico em dietas de su?nos em crescimento. 2019. 43 f. Disserta??o (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
url https://tede.ufrrj.br/jspui/handle/jspui/5797
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ADEOLA, O.; COWIESON, A.J.; BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science, v. 89, p. 3189-3218, 2011. ALMEIDA, L.M.; PANISSON, J.C.; Bonardi, A.J.K.; Massuquetto, A.; Maiorka, A; Scandolera, A.J.; Adi??o de simbi?tico em ra??o de leit?es com deafio nutricional no per?odo de creche. Archives of Veterinary Science, v.22, n.3, p.57-65, 2017. AWAD, W.; GHAREEB, K.; JOSEF B?HM, J. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Synbiotic Containing Enterococcus faecium and Oligosaccharides. International Journal of Molecular Sciences, v.9, p.2205-2216, 2008. BARKO, P.C.; MCMICHAEL, M.A.; SWANSON, K.S.; WILLIAMS, D.A. The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, v.32, p. 9-25, 2018. BEDFORD, M. R.; PARTRIDGE, G.G. Enzymes in farm animal nutrition, 2nd edition. 2. ed. Wallingford: CABI, 2010. BELLAVER, C.; FIALHO, E. T.; PROTAS, J. F. S.; GOMES, P. C. Rad?cula de malte na alimenta??o de su?nos em crescimento e termina??o. Pesquisa Agropecu?ria Brasileira, v.20, n.8, p.969-74, 1985. BON, M.L.; DAVIES, H.E.; GLYNN, C.; THOMPSON, C.; MADDEN, M.; WISEMAN, J.; DODD, C.E.R.; HURDIDGE, L.; PAYNE, G.; TREUT, Y.L.; CRAIGON, J.; T?TEMEYER, S.; MELLITS, K.H. Influence of probiotics on gut health in the weaned pig. Livestock Science, v. 133, p. 179?181, 2010. BRITO, J.M.; FERREIRA, A.H.C.; J?NIOR, H.A.S.; ARARIPE, M.N.B.A.; JO?O BATISTA LOPES3, DUARTE, A.R.; CARDOSO, E.S.; RODRIGUES, V.L. Probi?ticos, prebi?ticos e simbi?ticos na alimenta??o de n?o-ruminantes ? Revis?o. Revista Eletr?nica Nutritime, v.10, n.4, p. 2525 ? 2545, 2013. CAMPESTRINI, E.; SILVA, V.T.M.; APPELT, M.D. Utiliza??o de enzimas na alimenta??o animal. Revista Eletr?nica Nutritime, v.2, n.6, p.254-267, 2005. CANTARELLI, V.S.; FIALHO, E.T.; ALMEIDA, E.C.; ZANGERONIMO, M.G.; AMARAL, N.O.; LIMA, J.A.F. Caracter?sticas da carca?a e viabilidade econ?mica do uso de cloridrato de ractopamina para su?nos em termina??o com alimenta??o ? vontade ou restrita. lli et al. Ci?ncia Rural, v.39, n.3, 2009. CARDOSO, M.R.I.; Interfer?ncia da microbiota na sa?de intestinal: intera??o com antimicrobianos. In: Simp?sio Brasil Sul de Suinocultura e Brasil Sul Pig Fair, 11? e 10?, 2018, Santa Catarina. Anais ... Chapec?: Embrapa Su?nos e Aves, 2018. 75-80 p. CELI, P.; COWIESON, A.J.; FRU-NJI, F.; STEINERT, R.E.; KLUENTERB, A.-M.; VERLHACD, V. Gastrointestinal functionality in animal nutrition and health: New 36 opportunities for sustainable animal production. Animal Feed Science and Technology, v. 234, p. 88?100, 2017. CHAMONE, J.M.A.; MELO, M.T.P.; AROUCA, C.L.C.; BARBOSA, M.M.; SOUZA, F.A.; DOS SANTOS, D. Fisiologia digestiva de leit?es. Revista Eletr?nica Nutritime v.7, n.5, p.1353-1363, 2010. CHEN, H.; MAO, X.B.; HE, J.; YU, B.; HUANG, Z.Q.; YU, J.; ZHENG, P.; CHEN, D.W. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, v. 110, p. 1837?1848, 2013. CHEN, H.; MAO, X.B.; CHE, L.Q.; YU, B.; HE, J.; YU, J.; HAN, G.Q.; HUANG, Z.Q.; ZHENG, P.; CHEN, D.W. Impact of fiber types on gut microbiota, gut environment andgut function in fattening pigs. Animal Feed Science and Technology, v. 195, p. 101-111, 2014. CHO, J.H.; KIM, I.H. Effects of Beta Mannanase and Xylanase Supplementation in Low Energy Density Diets on Performances, Nutrient Digestibility, Blood Profiles and Meat Quality in Finishing Pigs. Asian Journal of Animal and Veterinary Advances, v. 8 (4), p. 622-630, 2013. CHRISTOFF, A. P.; SEREIA, A. F. R; BOBERG, D. R; MORAES, R. L. V.; OLIVEIRA, L. F. V. Bacterial identification through accurate library preparation and high-throughput sequencing. Florian?polis: Neoprospecta Microbiome Technologies, Sa, 2017. 5 p. DOWARAH, R.; VERMA, A.K.; AGARWAL, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Animal Nutrition, v.3, p.1-6, 2017. DOWARAH, R.; VERMA, A.K.; AGARWAL, N.; PATEL, B.H.M.; SINGH, P.; Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livestock Science, v.195, p. 74-79, 2017. FAO. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Gidelines for the evaluation of probiotics in food. 2002; 30.04?01.05.2002, London, Ontario, Kanada. FERREIRA, D.F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ci?ncia & Agrotecnologia, v.38, n.2, p.109-112, 2014. FIALHO, E. T.; BARBOSA, O.; FERREIRA, A. S.; GOMES, P. C.; GIROTTO, A. F. Utiliza??o da cevada suplementada com ?leo de soja para su?nos em crescimento e termina??o. Pesquisa Agropecu?ria Brasileira, v. 27, p. 1467-1475, 1992. FOUHSE, J.M.; ZIJLSTRA, R.T.; WILLING, B.P. The role of gut microbiota in the health and disease of pigs. Animal Frontiers, v.6, n.3, p. 30-36, 2016. GIANNENAS, I.; DOUKASB, D.; KARAMOUTSIOS, A.; TZORA, A.; BONOS, E.; SKOUFOS, I.; TSINAS, A.; CHRISTAKI, E.; TONTIS, D.; FLOROU-PANERI, P. Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte 37 subpopulations of fattening pigs. Animal Feed Science and Technology, v. 220, p. 159-167, 2016. HAMASALIM, H.J. Synbiotic as Feed Additives Relating to Animal Health and Performance. Advances in Microbiology, v.6, p. 288-302, 2016. HYEUN BUM KIM, H. B.; ISAACSON, R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, v.177, p. 242?251, 2015. ISAACSON, R.; KIM, H.B. The intestinal microbiome of the pig. Animal Health Research Reviews, v.13, n.1, p.100?109, 2012. JHA, R.; BERRECOSO, J.F.D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, v. 212, p. 18-26, 2016. J?RGENSEN, J.N.; LAGUNA, J.S.; MILL?N, C.;CASABUENA, O.; GRACIA, M.I. Effects of a Bacillus-based probiotic and dietary energycontent on the performance and nutrient digestibility ofwean to finish pigs. Animal Feed Science and Technology, v. 221, p. 54-61, 2016. KIARIE, E.; OWUSU-ASIEDU, A.; P?RON, A.; SIMMINS, P.H.; NYACHOTI, C.M. Efficacy of xilanase and b-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livestock Science, v. 148, p. 129?133, 2012. KICH, J.D.; MENEGUZZI, M. Interfer?ncia da microbiota na sa?de intestinal: Eubiose vs Disbiose. In: Simp?sio Brasil Sul de Suinocultura e Brasil Sul Pig Fair, 11? e 10?, 2018, Santa Catarina. Anais ... Chapec?: Embrapa Su?nos e Aves, 2018. 70-74 p. KLASING, K.C. Nutrition and the immune system. British Poultry Science, v.48, n.5, p. 525-537, 2007. KNUDSEN, K.E.B.; HEDEMANN, M.S.; L?RKE, H.N.; The role of carbohydrates in intestinal health of pigs. Animal Feed Science and Technology, v.173, p. 41-53, 2012. KONSTANTINOV, S.R.; FAVIER, C.F.; ZHU, W.Y.; WILLIAMS, B.A.; KL??, J.; SOUFFRANT, W.B.; DE VOS, W.M.; AKKERMANS, A.DL.; SMIDT, H. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Animal Research, v.53, p. 317?324, 2004. LEE, K.Y.; BALASUBRAMANIANA, B.; KIM, J.K.; KIM, I.H.; Dietary inclusion of xylanase improves growth performance, apparent total tract nutrient digestibility, apparent ileal digestibility of nutrients and amino acids and alters gut microbiota in growing pigs. Animal Feed Science and Technology, v.235, p. 105?109, 2018. LESER, T.D.; AMENUVOR, J.Z.; JENSEN, T.K.; LINDECRONA, R.H.; BOYE, M.; M?LLER, K. Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited. Applied and Environmental Microbiology, v.68, n.2, p. 673?690, 2002. 38 LIAO, S.F.; NYACHOTI, M. Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, v. 3, p.331- 343, 2017. LINDBERG, J. E,; LYBERG, K.; SANDS, J. Influence of phytase and xylanase supplementation of a wheat-based diet on ileal and total tract digestibility in growing pigs. Livestock Science,v.109, p. 268-270, 2007. LIU, G.; YU, L.; MART?NEZ, Y.; REN, W.; NI, H.; AL-DHABI, N.A.; DURAIPANDIYAN, V.; YIN, Y. Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets. Oxidative Medicine and Cellular Longevity, p.0-7, 2017, In: https://doi.org/10.1155/2017/3967439. LIU, Q.; ZHANG, W.M.; ZHANG, Z.J.; ZHANG, Y.J.; ZHANG, Y.W.; CHEN, L.; ZHUANG, S. Effect of fiber source and enzyme addition on the apparentdigestibility of nutrients and physicochemical properties ofdigesta in cannulated growing pigs. Animal Feed Science and Technology, v. 216, p. 262?272, 2016. LIU, W.C.; YE, M.; LIAO, J.H.; ZHAO, Z.H.; KIM, I.H.; AN, L.L. Application of complex probiotics in swine nutrition ? a review. Annals of Animal Science, vol.18, n. 2, p. 335?350, 2018. MARKOWIAK, P.; ?LI?EWSKA, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog, p. 10:21, 2018. In https://doi.org/10.1186/s13099-018-0250-0. MENIN, A.; RECK, C.; SOUZA, D.; KLEIN, C.; VAZ, E. Agentes bacterianos enteropatog?nicos em su?nos de diferentes faixas et?rias e perfil de resist?ncia a antimicrobianos de cepas de Escherichia coli e Salmonella spp. Ci?ncia Rural, v. 38, n.6, p.1687-1693, 2008. MILTENBURG,G. Extratos herbais como substitutivo de antimicrobianos na alimenta??o animal. In: SIMP?SIO SOBRE ADITIVOS ALTERNATIVOS NA NUTRI??O ANIMAL, 19., 2000, Campinas. Anais ...Campinas: CNBA, 2000. p.87-100. MOCHERLA, V.; SURYANARAYANA, A.N. Performance and Total tract Digestibility of Probiotic, Xylanase and Phytase in the Diets of Grower Pigs. Journal of Agriculture and Sustainability, v. 2 , n. 1, p. 86-97, 2013. MOREIRA, I.;MOURINHO, F.L.;CARVALHO, P.L.O.; PAIANO, D. ; PIANO, L.M .; JUNIOR, I.S.K. Avalia??o nutricional da casca de soja com ou sem complexo enzim?tico na alimenta??o de leit?es na fase inicial. Revista Brasileira de Zootecnia., v.38, n.12, p.2408-2416, 2009. NASCIMENTO, P.P. Disserta??o: Utiliza??o de complexo enzim?tico em ra??es contendo milho ou sorgo para leit?es em fase de creche. Mestrado em Ci?ncia Animal, Universidade Federal de Goi?s, Goi?nia - GO, 2010, 81 p; NELSON, D. L.; COX, M. M. Princ?pios de bioqu?mica de Lehninger. 5. ed. Porto Alegre: Artmed, 2011. 39 NDOU, S.P.; KIARIE, E.; AGYEKUMA, A.K.; HEO, J.M.; ROMERO, L.F.; ARENTD, S.; LORENTSEN, R.; NYACHOTI, C.M. Comparative efficacy of xylanases on growth performanceand digestibility in growing pigs fed wheat and wheat bran-or corn and corn DDGS-based diets supplemented with phytase. Animal Feed Science and Technology, v. 209, p. 230-239, 2015. NORTEY, T.N.; PATIENCE, J.F.; SANDS, J.S.; ZIJLSTRA, R.T. Xylanase supplementation improves energy digestibility of wheat by-products in grower pigs. Livestock Science, v.109, p. 96?99, 2007. OETTING, L.L.; UTIYAMA,C.E.; GIANI, P.A.; RUIZ, U.S.; MIYADA, V.S. Efeitos de extratos vegetais e antimicrobianos sobre a digestibilidade aparente, o desempenho, a morfometria dos ?rg?os e a histologia intestinal de leit?es rec?m-desmamados. Revista Brasileira de Zootecnia, v.35, n.4, p.1389-1397, 2006. OLIVEIRA, H.R.V. Disserta??o: Efeito da Xilanase Isolada ou Associada ? Levedura na Dieta de Leit?es a Base de Sorgo sobre o Desempenho e a Microbiota Intestinal. Mestrado em Agronomia, Universidade Estadual do Norte do Paran?, Bandeirantes ? PR, 2018, 48 p; O?SHEA, C.J.; MC ALPINE, P.O.; SOLAN, P.; CURRAN, T.; VARLEY, P.F.; WALSH, A.M.; DOHERTY, J.V.O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower?finisher pigs. Animal Feed Science and Technology, v.189, p. 88? 97, 2014. OWUSU-ASIEDU, A.; SIMMINS, P.H.; BRUFAU, J.; LIZARDO, R.; P?RON, A. Effect of xylanase and ?-glucanase on growth performance and nutrient digestibility in piglets fed wheat?barley-based diets. Livestock Science, v. 134, p.76?78, 2010. PAIX?O, L.A.; CASTRO, F.F.S. A coloniza??o da microbiota intestinal e sua influ?ncia na sa?de do hospedeiro. Universitas: Ci?ncias da Sa?de, v. 14, n. 1, p. 85-96, 2016. PASCOAL, L. A. F.; SILVA, L. P. G.; MIRANDA, E. C.; MARTINS, T. D. D.; THOMAZ, M. C.; LAMENHA, M. I. A.; ALMEIDA, D. H. Complexo enzim?tico em dietas simples sobre os par?metros s?ricos e a morfologia intestinal de leit?es. Revista Brasileira de Sa?de e Produ??o Animal, v.9, n.1, p. 117-129, 2008. PAJARILLO, E.A.B.; CHAE, J.P.; BALOLONG, M,P.; KIM, H.B.; KANG, D.K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of General and Applied Microbiology, v. 60, p. 140?146, 2014. PASSOS, A.A.; PARK, I.; FERKET, P.; VON HEIMENDAHL, E.; KIM, S.W. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Animal Nutrition, v.1, p. 19-23, 2015. PLUSKE, J.R.; TURPIN, D.L.; KIM, J.C.; Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, v.4, p. 187-196, 2018. 40 RAI, V.; YADAV, B.; LAKHANI, G. P.; Application of Probiotic and Prebiotic in Animals Production: A Review. Environment & Ecology, v.31, n.2B, p.873-876, 2013. RICHARDS, J. D.; GONG, J.; DE LANGE, C. F. M. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science, v.85, p. 421?435, 2005. ROBLES-HUAYNATE, R. A.; THOMAZ, M. C.; SANTANA, ?. E.; MASSON, G.C.I.H.; AMORIM, A.B.; SILVA, S. Z.; RUIZ, U.S.; WATANABE, P.H.; BUDI?O, F. E.L. Effect of the probiotic addition in diets of weaned piglets on the characteristics of the digesting system and of performance. Revista Brasileira de Sa?de e Produ??o Animal, v.14, n.1, p.248-258, 2013. ROSS, G.R.; GUSILS, C.; OLISZEWSKI, R.; HOLGADO, S.C.; GONZ?LEZ, S.N. Effects of probiotic administration in swine. Journal of Bioscience and Bioengineering, vol. 109, n. 6, p.545?549, 2010. ROSTAGNO, H.S.; ALBINO, L. F. T.; HANNAS, M. I.; DONZELE, J.L.; SAKOMURA, N. K.; PERAZZO, F. G.; SARAIVA, A.; TEIXEIRA, M.L.; RODRIGUES, P. B.; OLIVEIRA, R. F.; BARRETO, S.L. T.; BRITO, C. O. 2017. Tabelas Brasileiras para Aves e Su?nos: Composi??o de Alimentos e Exig?ncias Nutricionais. 3. ed. Vi?osa, MG, 2017. SAKOMURA, N.K.; ROSTAGNO, H.S. M?todos de pesquisa em nutri??o de monog?stricos. Jaboticabal, SP: Editora Funep, 2007. 286 p. SANTANA, A. L. A.; CARVALHO, P. L. O.; CRISTOFORI, E. C.; CHAMBO, P. C. S.; BARBIZAN, M. NUNES, R. V.; GREGORY, C. R.; GENOVA, J. L. Supplementation of pig diets in the growth and termination phases with different calcium sources. Tropical Animal Health Production, 2017 doi.org/10.1007/s11250-017-1456-8 SATTLER, V.A.; BAYER, K.; SCHATZMAYR, G.; HASLBERGER, A.G.; KLOSE, V. Impact of a probiotic, inulin, or their combination on the piglets? microbiota at different intestinal locations. Beneficial Microbes, v.6, n.4, p. 473-483, 2015; SEEDOR, J.G. The biophosphanate alendronate (MK-217) inhibit bone loss due to ovariectomy in rats. Journal of Bone and Mineral Research, v. 4, p. 265-270, 1993. SILVA, D. J.; QUEIROZ, A. C. An?lise de alimentos: m?todos qu?micos e biol?gicos. 3. ed. Vi?osa: UFV, 2006. 235 p. SHE, Y,; LIU, Y.; V, C. G.; STEIN, H.H. Effects of graded levels of an Escherichia coli phytase on growth performance, apparent total tract digestibility of phosphorus, and on bone parameters of weanling pigs fed phosphorus-deficient corn-soybean meal based diets. Animal feed Science and technology, p.102-109, 2017. SILVA, D. J.; QUEIROZ, A. C. An?lise de alimentos (m?todos qu?micos e biol?gicos). Vi?osa, MG: Editora UFV, 2001. 235p. 41 SILVA, S.Z.; THOMAZ, M.C; WATANABE, P.H.; Rizal Alcides ROBLES HUAYNATE, A.; RUIZ,U.S.; PASCOAL, L.A.F.; SANTOS, V.M.; MASSON, G.C.I.H. Mananoligossacar?deo em dietas para leit?es desmamados. Brazilian Journal of Veterinary Research and Animal Science, v. 49, n. 2, p. 102-110, 2012. STERK , A.;. VERDONK, J.M.A.J.; MUL, A.J.; SOENEN, B.; BEZEN?ON, M.L.; FREHNER, M.; LOSA, R. Effect of xylanase supplementation to a cereal-based diet on the apparent faecal digestibility in weanling piglets. Livestock Science, v.108, p. 269?271, 2007. UNNO, T.; KIM, J.; GUEVARRA, R.B.; NGUYEN, S.G. Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota. Journal of Microbiology and Biotechnology , v.25, n.4, p.431- 438, 2015. UPADHAYA, S.D.; KIM, S.C.; VALIENTES, R.A.; KIM, I.H.; The Effect of Bacillus based Feed Additive on Growth Performance, Nutrient Digestibility, Fecal Gas Emission, and Pen Cleanup Characteristics of Growing-Finishing Pigs. Asian-Australasian Journal of Animal Sciences, v.28, n.7, p. 999-1005. VAN LAERE, K.M.J.; HARTEMINK, R.; BOSVELD, M.; HENK A. SCHOLS, H.A.;VORAGEN, A.G.J. Fermentation of Plant Cell Wall Derived Polysaccharides and Their Corresponding Oligosaccharides by Intestinal Bacteria. J. Journal of Agricultural and Food Chemistry, v. 48, p.1644-1652, 2000. YIN , Y.L.; BAIDOOB, S.K.; SCHULZEC, H.; SIMMINS, P.H. Effects of supplementing iets containing hulless barley varieties having different levels of non-starch polysaccharides with b-glucanase and xylanase on the physiological status ofthe gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Production Sciencen, v.71, p. 97?107, 2001. YIRGA, H. The Use of Probiotics in Animal Nutrition. Journal of Probiotics and Health, v.3, n. 2, p. 1-10, 2015. WANG Y. Prebiotics: present and future in food science and technology. Food Research International, v.42, p. 8-12, 2009. WEISS, E.; EKLUND1, M.; SEMASKAITE2, A.; URBAITYTE1, R.; METZLER-ZEBELI3, B.; SAUER1, N.; RATRIYANTO4, A.; GRUZAUSKAS2, R.; MOSENTHIN, R. Combinations of feed additives affect ileal fibre digestibility and bacterial numbers in ileal digesta of piglets. Czech Journal of Animal Science, v. 58, n. 8, p. 351-359, 2013. ZEINELDIN, M.; ALDRIDGE, B.; BLAIR, B.; KANCER, K.; LOWE, J. Impact of parenteral antimicrobial administration on the structure and diversity of the fecal microbiota of growing pigs. Microbial pathogenesis, v. 118, p. 220-229, 2018. ZENG, Z.K.; LI, Q.Y.; TIAN, Q.Y.; XU, Y.T.; PIAO, X.S. The combination of carbohydrases and phytase to improve nutritional value and non-starch polysaccharides degradation for growing pigs fed diets with or without wheat bran. Animal Feed Science and Technology, v.235, p. 138?146, 2018. 42 ZHAO, W.; WANG, Y.; LIU, S.; HUANG, J.; ZHAI, Z.; HE, C.; DING, J.; WANG, J.; WANG, H.; FAN, W.; ZHAO, J.; MENG, H. The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. Plos One, v.10, n.2, p. 1-13, 2015. ZHANG, Y.J.; LIU, Q.; ZHANG, W.M.; ZHANG, Z.J.; WANG, W.L.; ZHUANG, S. Gastrointestinal microbial diversity and short-chain fatty acid production in pigs fed different fibrous diets with or without cell wall-degrading enzyme supplementation. Livestock Science, v.207, p. 105?116, 2018. ZHANG, Z.;TUN, H.M.; LI, R.; GONZALEZ, B.J.M.; KEENES, H.C.; NYACHOTI, C.M.; KIARIE, E.; KHAFIPOUR, E. Impact of xylanases on gut microbiota of growing pigs fed corn- or wheat-based diets. Animal Nutrition, v.4, p. 339-350, 2018.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Zootecnia
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Zootecnia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5797/4/2019+-+Lucas+Rodrigo+Justino.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5797/3/2019+-+Lucas+Rodrigo+Justino.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5797/2/2019+-+Lucas+Rodrigo+Justino.pdf
http://localhost:8080/tede/bitstream/jspui/5797/1/license.txt
bitstream.checksum.fl_str_mv 26cec0730b93a4cadc89cf0a1e313d92
135ae38e0119dcb68bfc6cc8067888e6
745db939a346dba5dec4da33e4db2b03
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220135665139712