Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)

Detalhes bibliográficos
Autor(a) principal: Marsiglia, Wanda Izabel Monteiro de Lima
Data de Publicação: 2021
Outros Autores: Santiago, Ângela Maria, Alves, Helton Gomes, Almeida, Raphael Lucas Jacinto, Santos, Newton Carlos, Muniz, Cecília Elisa de Sousa, Galdino, Pablícia Oliveira, Mota, Mércia Melo de Almeida, Almeida, Marcello Maia de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/13214
Resumo: The present work aims to determine the physical-chemical composition and bioactive compounds of the fresh jabuticaba bark, perform its drying kinetics at three different drying air temperatures, adjust empirical and diffusive mathematical models to the experimental data, produce the powder and evaluate the effect of drying temperature on its composition. The fruits were harvested, washed and sanitized with sodium hypochlorite solution, then the fruits were manually pulped and the solid fractions, pulp, peels and seeds were separated. The jabuticaba peels were dried in an oven with air circulation at temperatures of 45, 50 and 55 ºC and a speed of 1.0 m/s. Curves of drying kinetics were constructed, represented by the ratio of water content to drying time in minutes, adjusting to the mathematical models of Handerson and Pabis, Logarithmic, Midilli, Page and Newton to the experimental data. The models were selected taking as a parameter the magnitude of the determination coefficient (R2) and the chi-square function (). Shortly after drying, the shells were crushed to obtain the powder, which was characterized before and after drying in terms of physical, chemical, bioactive compounds and antioxidant activity. Fresh jabuticaba peels showed high levels of total phenolic compounds and total tannins. The Midilli model stood out from the others for presenting the highest value of R2 (> 99%) and the lowest value of the chi-square function (<0.000327) for the three temperatures studied, especially for the 45 ºC. The drying kinetics of jabuticaba peels showed that the temperature influenced the process, and that the constant “k” increased with its elevation, and the time of the process decreased as a result of its increase. The temperature of 45 ° C ensured a greater preservation of the total phenolic compounds, total anthocyanins and total flavonoids of the powder of the jabuticaba peels, and can be an alternative as an ingredient in the elaboration of several products, among them: bread, cake, biscuit, yogurt and drink milk because it has a significant amount of these bioactive compounds.
id UNIFEI_24fa9193670bc0233aba88e87aaa7c30
oai_identifier_str oai:ojs.pkp.sfu.ca:article/13214
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)Modelado y simulación del proceso de secado de cáscaras de jabuticaba (Myrciaria cauliflora)Modelagem e simulação do processo de secagem das cascas de jabuticaba (Myrciaria cauliflora) Functional foodBioactive compoundsConservationAgro-industrial waste.Comida funcionalCompuestos bioactivosConservaciónResiduos agroindustriales.Alimento funcionalCompostos bioativosConservaçãoResíduo agroindustrial.The present work aims to determine the physical-chemical composition and bioactive compounds of the fresh jabuticaba bark, perform its drying kinetics at three different drying air temperatures, adjust empirical and diffusive mathematical models to the experimental data, produce the powder and evaluate the effect of drying temperature on its composition. The fruits were harvested, washed and sanitized with sodium hypochlorite solution, then the fruits were manually pulped and the solid fractions, pulp, peels and seeds were separated. The jabuticaba peels were dried in an oven with air circulation at temperatures of 45, 50 and 55 ºC and a speed of 1.0 m/s. Curves of drying kinetics were constructed, represented by the ratio of water content to drying time in minutes, adjusting to the mathematical models of Handerson and Pabis, Logarithmic, Midilli, Page and Newton to the experimental data. The models were selected taking as a parameter the magnitude of the determination coefficient (R2) and the chi-square function (). Shortly after drying, the shells were crushed to obtain the powder, which was characterized before and after drying in terms of physical, chemical, bioactive compounds and antioxidant activity. Fresh jabuticaba peels showed high levels of total phenolic compounds and total tannins. The Midilli model stood out from the others for presenting the highest value of R2 (> 99%) and the lowest value of the chi-square function (<0.000327) for the three temperatures studied, especially for the 45 ºC. The drying kinetics of jabuticaba peels showed that the temperature influenced the process, and that the constant “k” increased with its elevation, and the time of the process decreased as a result of its increase. The temperature of 45 ° C ensured a greater preservation of the total phenolic compounds, total anthocyanins and total flavonoids of the powder of the jabuticaba peels, and can be an alternative as an ingredient in the elaboration of several products, among them: bread, cake, biscuit, yogurt and drink milk because it has a significant amount of these bioactive compounds.El presente trabajo tiene como objetivo determinar la composición físico-química y compuestos bioactivos de la corteza fresca de jabuticaba, realizar su cinética de secado a tres temperaturas de aire de secado diferentes, ajustar modelos matemáticos empíricos y difusivos a los datos experimentales, producir el polvo y evaluar el efecto de temperatura de secado en su composición. Los frutos se recolectaron, lavaron y desinfectaron con solución de hipoclorito de sodio, luego los frutos se despulparon manualmente y se separaron las fracciones sólidas, pulpa, cáscaras y semillas. Las cáscaras de jabuticaba se secaron en un horno con circulación de aire a temperaturas de 45, 50 y 55 ºC y una velocidad de 1,0 m/s. Se construyeron curvas de cinética de secado, representadas por la relación entre el contenido de agua y el tiempo de secado en minutos, ajustándose a los modelos matemáticos de Handerson y Pabis, Logarithmic, Midilli, Page y Newton a los datos experimentales. Los modelos fueron seleccionados tomando como parámetro la magnitud del coeficiente de determinación (R2) y la función chi-cuadrado (). Poco después del secado, las cáscaras se trituraron para obtener el polvo, que se caracterizó antes y después del secado en términos de compuestos físicos, químicos, bioactivos y actividad antioxidante. Las cáscaras frescas de jabuticaba mostraron altos niveles de compuestos fenólicos totales y taninos totales. El modelo de Midilli se destacó de los demás por presentar el mayor valor de R2 (> 99%) y el menor valor de la función chi-cuadrado (<0.000327) para las tres temperaturas estudiadas, especialmente para los 45 ºC. La cinética de secado de las cáscaras de jabuticaba mostró que la temperatura influyó en el proceso y que la constante “k” aumentó con su elevación y el tiempo del proceso disminuyó como resultado de su aumento. La temperatura de 45 °C aseguró una mayor conservación de los compuestos fenólicos totales, antocianinas totales y flavonoides totales del polvo de las cáscaras de jabuticaba, pudiendo ser una alternativa como ingrediente en la elaboración de varios productos, entre ellos: pan, torta, bizcocho, yogur y leche de bebida porque tiene una cantidad significativa de estos compuestos bioactivos.O presente trabalho tem como objetivo determinar a composição físico-química e dos compostos bioativos da casca de jabuticaba fresca, realizar a sua cinética de secagem em três diferentes temperaturas de ar de secagem, ajustar modelos matemáticos empíricos e difusivo aos dados experimentais, produzir o pó e avaliar efeito da temperatura de secagem sobre a sua composição. Os frutos foram colhidos, lavados e higienizados com solução de hipoclorito de sódio, em seguida os frutos foram despolpados manualmente e as frações sólidas, polpa, cascas e sementes foram separadas. As cascas de jabuticaba foram secas em estufa com circulação de ar nas temperaturas de 45, 50 e 55 ºC e velocidade de 1.0 m/s.  Foram construídas as curvas da cinética de secagem, representadas pela razão do teor de água em função do tempo de secagem em minutos, ajustando aos modelos matemáticos de Handerson e Pabis, Logarítmico, Midilli, Page e Newton aos dados experimentais. Os modelos foram selecionados tomando-se como parâmetro a magnitude do coeficiente de determinação (R2) e a função qui-quadrado (). Logo após a secagem as cascas foram trituradas para obtenção do pó, o qual foi caracterizado antes e após a secagem quanto as características físicas, químicas, compostos bioativos e atividade antioxidante. As cascas frescas de jabuticaba apresentaram altos teores de compostos fenólicos totais e taninos totais. O modelo de Midilli se destacou dos demais por apresentar o maior valor de R2 (>99%) e o menor valor da função qui-quadrado (<0.000327) para as três temperaturas estudadas, em especial para a de 45 ºC. A cinética de secagem das cascas de jabuticaba mostrou que a temperatura influenciou no processo, e que a constante “k” aumentou com a sua elevação, e o tempo do processo diminuiu em função do seu aumento. A temperatura de 45 °C garantiu uma maior preservação dos compostos fenólicos totais, antocianinas totais e flavonoides totais do pó das cascas da jabuticaba, podendo ser uma alternativa como ingrediente na elaboração de vários produtos dentre eles: pão, bolo, biscoito, iogurte e bebida láctea por ter uma quantidade significativa desses compostos bioativos.Research, Society and Development2021-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1321410.33448/rsd-v10i3.13214Research, Society and Development; Vol. 10 No. 3; e21510313214Research, Society and Development; Vol. 10 Núm. 3; e21510313214Research, Society and Development; v. 10 n. 3; e215103132142525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/13214/11913Copyright (c) 2021 Wanda Izabel Monteiro de Lima Marsiglia; Ângela Maria Santiago; Helton Gomes Alves; Raphael Lucas Jacinto Almeida; Newton Carlos Santos; Cecília Elisa de Sousa Muniz; Pablícia Oliveira Galdino; Mércia Melo de Almeida Mota; Marcello Maia de Almeidahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMarsiglia, Wanda Izabel Monteiro de Lima Santiago, Ângela Maria Alves, Helton Gomes Almeida, Raphael Lucas JacintoSantos, Newton Carlos Muniz, Cecília Elisa de Sousa Galdino, Pablícia Oliveira Mota, Mércia Melo de Almeida Almeida, Marcello Maia de 2021-03-28T12:03:35Zoai:ojs.pkp.sfu.ca:article/13214Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:34:36.940968Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
Modelado y simulación del proceso de secado de cáscaras de jabuticaba (Myrciaria cauliflora)
Modelagem e simulação do processo de secagem das cascas de jabuticaba (Myrciaria cauliflora)
title Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
spellingShingle Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
Marsiglia, Wanda Izabel Monteiro de Lima
Functional food
Bioactive compounds
Conservation
Agro-industrial waste.
Comida funcional
Compuestos bioactivos
Conservación
Residuos agroindustriales.
Alimento funcional
Compostos bioativos
Conservação
Resíduo agroindustrial.
title_short Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
title_full Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
title_fullStr Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
title_full_unstemmed Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
title_sort Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
author Marsiglia, Wanda Izabel Monteiro de Lima
author_facet Marsiglia, Wanda Izabel Monteiro de Lima
Santiago, Ângela Maria
Alves, Helton Gomes
Almeida, Raphael Lucas Jacinto
Santos, Newton Carlos
Muniz, Cecília Elisa de Sousa
Galdino, Pablícia Oliveira
Mota, Mércia Melo de Almeida
Almeida, Marcello Maia de
author_role author
author2 Santiago, Ângela Maria
Alves, Helton Gomes
Almeida, Raphael Lucas Jacinto
Santos, Newton Carlos
Muniz, Cecília Elisa de Sousa
Galdino, Pablícia Oliveira
Mota, Mércia Melo de Almeida
Almeida, Marcello Maia de
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Marsiglia, Wanda Izabel Monteiro de Lima
Santiago, Ângela Maria
Alves, Helton Gomes
Almeida, Raphael Lucas Jacinto
Santos, Newton Carlos
Muniz, Cecília Elisa de Sousa
Galdino, Pablícia Oliveira
Mota, Mércia Melo de Almeida
Almeida, Marcello Maia de
dc.subject.por.fl_str_mv Functional food
Bioactive compounds
Conservation
Agro-industrial waste.
Comida funcional
Compuestos bioactivos
Conservación
Residuos agroindustriales.
Alimento funcional
Compostos bioativos
Conservação
Resíduo agroindustrial.
topic Functional food
Bioactive compounds
Conservation
Agro-industrial waste.
Comida funcional
Compuestos bioactivos
Conservación
Residuos agroindustriales.
Alimento funcional
Compostos bioativos
Conservação
Resíduo agroindustrial.
description The present work aims to determine the physical-chemical composition and bioactive compounds of the fresh jabuticaba bark, perform its drying kinetics at three different drying air temperatures, adjust empirical and diffusive mathematical models to the experimental data, produce the powder and evaluate the effect of drying temperature on its composition. The fruits were harvested, washed and sanitized with sodium hypochlorite solution, then the fruits were manually pulped and the solid fractions, pulp, peels and seeds were separated. The jabuticaba peels were dried in an oven with air circulation at temperatures of 45, 50 and 55 ºC and a speed of 1.0 m/s. Curves of drying kinetics were constructed, represented by the ratio of water content to drying time in minutes, adjusting to the mathematical models of Handerson and Pabis, Logarithmic, Midilli, Page and Newton to the experimental data. The models were selected taking as a parameter the magnitude of the determination coefficient (R2) and the chi-square function (). Shortly after drying, the shells were crushed to obtain the powder, which was characterized before and after drying in terms of physical, chemical, bioactive compounds and antioxidant activity. Fresh jabuticaba peels showed high levels of total phenolic compounds and total tannins. The Midilli model stood out from the others for presenting the highest value of R2 (> 99%) and the lowest value of the chi-square function (<0.000327) for the three temperatures studied, especially for the 45 ºC. The drying kinetics of jabuticaba peels showed that the temperature influenced the process, and that the constant “k” increased with its elevation, and the time of the process decreased as a result of its increase. The temperature of 45 ° C ensured a greater preservation of the total phenolic compounds, total anthocyanins and total flavonoids of the powder of the jabuticaba peels, and can be an alternative as an ingredient in the elaboration of several products, among them: bread, cake, biscuit, yogurt and drink milk because it has a significant amount of these bioactive compounds.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/13214
10.33448/rsd-v10i3.13214
url https://rsdjournal.org/index.php/rsd/article/view/13214
identifier_str_mv 10.33448/rsd-v10i3.13214
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/13214/11913
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 3; e21510313214
Research, Society and Development; Vol. 10 Núm. 3; e21510313214
Research, Society and Development; v. 10 n. 3; e21510313214
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052671810600960