Burning Graphene Layer-by-Layer

Detalhes bibliográficos
Autor(a) principal: Ermakov, Victor A.
Data de Publicação: 2015
Outros Autores: Alaferdov, Andrei V., Vaz, Alfredo R., Perim, Eric, Autreto, Pedro A. S., Paupitz, Ricardo [UNESP], Galvao, Douglas S., Moshkalev, Stanislav A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.nature.com/articles/srep11546
http://hdl.handle.net/11449/129039
Resumo: Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.
id UNSP_f04e6d543981e5513c9efff49577a654
oai_identifier_str oai:repositorio.unesp.br:11449/129039
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Burning Graphene Layer-by-LayerGraphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.Univ Estadual Campinas, Ctr Semicond Components, BR-13083870 Campinas, SP, BrazilUniv Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, BrazilUNESP, Univ Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, BrazilUNESP, Univ Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, BrazilNature Publishing GroupUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Ermakov, Victor A.Alaferdov, Andrei V.Vaz, Alfredo R.Perim, EricAutreto, Pedro A. S.Paupitz, Ricardo [UNESP]Galvao, Douglas S.Moshkalev, Stanislav A.2015-10-21T20:15:17Z2015-10-21T20:15:17Z2015-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9application/pdfhttp://www.nature.com/articles/srep11546Scientific Reports. London: Nature Publishing Group, v. 5, 9 p., 2015.2045-2322http://hdl.handle.net/11449/12903910.1038/srep11546WOS:000356663700001WOS000356663700001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientific Reports4.1221,533info:eu-repo/semantics/openAccess2024-01-07T06:29:30Zoai:repositorio.unesp.br:11449/129039Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-01-07T06:29:30Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Burning Graphene Layer-by-Layer
title Burning Graphene Layer-by-Layer
spellingShingle Burning Graphene Layer-by-Layer
Ermakov, Victor A.
title_short Burning Graphene Layer-by-Layer
title_full Burning Graphene Layer-by-Layer
title_fullStr Burning Graphene Layer-by-Layer
title_full_unstemmed Burning Graphene Layer-by-Layer
title_sort Burning Graphene Layer-by-Layer
author Ermakov, Victor A.
author_facet Ermakov, Victor A.
Alaferdov, Andrei V.
Vaz, Alfredo R.
Perim, Eric
Autreto, Pedro A. S.
Paupitz, Ricardo [UNESP]
Galvao, Douglas S.
Moshkalev, Stanislav A.
author_role author
author2 Alaferdov, Andrei V.
Vaz, Alfredo R.
Perim, Eric
Autreto, Pedro A. S.
Paupitz, Ricardo [UNESP]
Galvao, Douglas S.
Moshkalev, Stanislav A.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ermakov, Victor A.
Alaferdov, Andrei V.
Vaz, Alfredo R.
Perim, Eric
Autreto, Pedro A. S.
Paupitz, Ricardo [UNESP]
Galvao, Douglas S.
Moshkalev, Stanislav A.
description Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-21T20:15:17Z
2015-10-21T20:15:17Z
2015-06-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.nature.com/articles/srep11546
Scientific Reports. London: Nature Publishing Group, v. 5, 9 p., 2015.
2045-2322
http://hdl.handle.net/11449/129039
10.1038/srep11546
WOS:000356663700001
WOS000356663700001.pdf
url http://www.nature.com/articles/srep11546
http://hdl.handle.net/11449/129039
identifier_str_mv Scientific Reports. London: Nature Publishing Group, v. 5, 9 p., 2015.
2045-2322
10.1038/srep11546
WOS:000356663700001
WOS000356663700001.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Scientific Reports
4.122
1,533
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 9
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965548519358464