Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications

Detalhes bibliográficos
Autor(a) principal: Natália Aparecida Fontana
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.59.2021.tde-09082021-183946
Resumo: GRASPs (from Golgi ReAssembly and Stacking Proteins) are proteins involved in the organization and maintenance of the Golgi complex. While the extension of this role has been questioned in the past few years, many other functions have been assigned to them. In particular, we highlight the participation in tethering vesicles that need to move along the Golgi and processes of unconventional protein secretion. Structurally, GRASPs can be divided in an N-terminal domain called GRASP and a non-conserved, highly disordered C-terminal domain, termed SPR. Structural information, hitherto, has been scarce, which motivated the beginning of this project. To study GRASPs, we used the only GRASP (called Grh1) of a model organism: the yeast Saccharomyces cereviseae. We showed that Grh1 contains regions of intrinsic disorder also in its GRASP domain, being classified as a molten globule. Besides, Grh1 is capable of forming amyloid-like fibrils when in specific conditions in vitro, such as low pH and moderately elevated temperature. With the aim of investigating a possible relationship between fibril formation and the role played by Grh1 in unconventional protein secretion, part of the present thesis was done in vivo, and it was possible to demonstrate that the yeast GRASP fibrillates in starvation and heat-shock conditions. Here, we discuss the use of Fluorescence Lifetime Imaging Microscopy as a valid technique to help detect fibril formation in cell and also the possible implications of fibrillation for the formation of the Compartments for Unconventional Protein Secretion (CUPS). This work also contains initial experiments that point to a liquid-liquid phase separation of Grh1, an observation in consonance with the findings of intrinsic disorder and the recent proposition that the Golgi is actually an organelle phase separated from the cytosol. Finally, we present initial experiments of the characterization of Bug1, the golgin partner of Grh1. There are no structural data available on golgins in solution yet and their purification always presented an obstacle on obtaining them. We describe here a protocol capable of purifying Bug1 in high quantities, therefore paving the way for many other discoveries in the fields of protein secretion and liquid-liquid phase separation.
id USP_addfcea4482078df956c70acda726b07
oai_identifier_str oai:teses.usp.br:tde-09082021-183946
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications Proteína de Reorganização e Empilhamento do Golgi: propriedades biofísicas e suas implicações funcionais 2021-06-09Antônio José da Costa FilhoLuciano BachmannPaulo Mascarello BischRichard Charles GarrattJerson Lima da SilvaLuis Lamberti Pinto da SilvaNatália Aparecida FontanaUniversidade de São PauloFísica Aplicada à Medicina e BiologiaUSPBR Amyloid fibrils Espectroscopia Fibras amiloides GRASP GRASP Intrinsically disordered proteins Proteínas intrinsecamente desordenadas Secreção não convencional de proteínas Spectroscopy Unconventional protein secretion GRASPs (from Golgi ReAssembly and Stacking Proteins) are proteins involved in the organization and maintenance of the Golgi complex. While the extension of this role has been questioned in the past few years, many other functions have been assigned to them. In particular, we highlight the participation in tethering vesicles that need to move along the Golgi and processes of unconventional protein secretion. Structurally, GRASPs can be divided in an N-terminal domain called GRASP and a non-conserved, highly disordered C-terminal domain, termed SPR. Structural information, hitherto, has been scarce, which motivated the beginning of this project. To study GRASPs, we used the only GRASP (called Grh1) of a model organism: the yeast Saccharomyces cereviseae. We showed that Grh1 contains regions of intrinsic disorder also in its GRASP domain, being classified as a molten globule. Besides, Grh1 is capable of forming amyloid-like fibrils when in specific conditions in vitro, such as low pH and moderately elevated temperature. With the aim of investigating a possible relationship between fibril formation and the role played by Grh1 in unconventional protein secretion, part of the present thesis was done in vivo, and it was possible to demonstrate that the yeast GRASP fibrillates in starvation and heat-shock conditions. Here, we discuss the use of Fluorescence Lifetime Imaging Microscopy as a valid technique to help detect fibril formation in cell and also the possible implications of fibrillation for the formation of the Compartments for Unconventional Protein Secretion (CUPS). This work also contains initial experiments that point to a liquid-liquid phase separation of Grh1, an observation in consonance with the findings of intrinsic disorder and the recent proposition that the Golgi is actually an organelle phase separated from the cytosol. Finally, we present initial experiments of the characterization of Bug1, the golgin partner of Grh1. There are no structural data available on golgins in solution yet and their purification always presented an obstacle on obtaining them. We describe here a protocol capable of purifying Bug1 in high quantities, therefore paving the way for many other discoveries in the fields of protein secretion and liquid-liquid phase separation. GRASPs (de Golgi ReAssembly and Stacking Proteins) são proteínas inicialmente envolvidas na organização e manutenção do complexo de Golgi. Enquanto este papel vem sendo questionado nos últimos anos, muitas outras funções vem sendo a elas atribuídas. Em especial, destacamos a participação no ancoramento de vesículas de secreção que precisam atravessar o Golgi e processos de secreção não convencional. Estruturalmente, GRASPs podem ser divididas em um domínio N-terminal chamado GRASP e um domínio C-terminal que é altamente desordenado e não conservado, chamado SPR. Informação estrutural sobre GRASPs, até agora, tem sido muito escassa, o que motivou o início deste trabalho. Para estudar GRASPs, usamos a única GRASP da levedura Saccharomyces cereviseae (Grh1), um organismo modelo. Demonstramos que Grh1 possui regiões de desordem intrínseca também no domínio GRASP, sendo considerada uma proteína do tipo molten globule. Além disso, Grh1 é capaz de formar fibras do tipo amiloide quando em condições específicas in vitro, como baixo pH e temperatura levemente elevada. No objetivo de investigar uma possível correlação entre a formação de fibras e a função desempenhada por Grh1 em processos de secreção não convencional, parte desse trabalho foi realizada in vivo, e foi possível mostrar que a GRASP de levedura fibrila em condições específicas de privação de nutrientes e choque térmico. Aqui, discutimos o uso da microscopia do tempo de vida de fluorescência como uma técnica válida para auxiliar na detecção de formação de fibras in cell, e também as possíveis implicações da formação de fibras por GRASPs para formação de Compartimentos para Secreção Não Convencional (do inglês CUPS). Esse trabalho também contém experimentos iniciais que apontam para uma separação de fase líquido-líquido sofrida poe Grh1, o que estaria em consonância com os achados de desordem intrínseca e a recente proposta de que o Golgi seria, na verdade, uma organela em fase separada do citosol. No final deste trabalho, apresentamos ainda experimentos iniciais de caracterização de Bug1, a golgina parceira de Grh1. Não existem dados estruturais disponíveis para nenhuma golgina em solução, e sua purificação sempre se mostrou um obstáculo. Descrevemos aqui um protocolo através do qual foi possível se purificar Bug1 em grandes quantidades, abrindo caminho assim para que muitas outras descobertas sejam feitas no que diz respeito à secreção de proteínas e separação de fase líquido-líquido. https://doi.org/10.11606/T.59.2021.tde-09082021-183946info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:32:57Zoai:teses.usp.br:tde-09082021-183946Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T12:23:35.217718Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
dc.title.alternative.pt.fl_str_mv Proteína de Reorganização e Empilhamento do Golgi: propriedades biofísicas e suas implicações funcionais
title Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
spellingShingle Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
Natália Aparecida Fontana
title_short Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
title_full Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
title_fullStr Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
title_full_unstemmed Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
title_sort Golgi Reassembly and Stacking Protein: biophysical properties and their functional implications
author Natália Aparecida Fontana
author_facet Natália Aparecida Fontana
author_role author
dc.contributor.advisor1.fl_str_mv Antônio José da Costa Filho
dc.contributor.referee1.fl_str_mv Luciano Bachmann
dc.contributor.referee2.fl_str_mv Paulo Mascarello Bisch
dc.contributor.referee3.fl_str_mv Richard Charles Garratt
dc.contributor.referee4.fl_str_mv Jerson Lima da Silva
dc.contributor.referee5.fl_str_mv Luis Lamberti Pinto da Silva
dc.contributor.author.fl_str_mv Natália Aparecida Fontana
contributor_str_mv Antônio José da Costa Filho
Luciano Bachmann
Paulo Mascarello Bisch
Richard Charles Garratt
Jerson Lima da Silva
Luis Lamberti Pinto da Silva
description GRASPs (from Golgi ReAssembly and Stacking Proteins) are proteins involved in the organization and maintenance of the Golgi complex. While the extension of this role has been questioned in the past few years, many other functions have been assigned to them. In particular, we highlight the participation in tethering vesicles that need to move along the Golgi and processes of unconventional protein secretion. Structurally, GRASPs can be divided in an N-terminal domain called GRASP and a non-conserved, highly disordered C-terminal domain, termed SPR. Structural information, hitherto, has been scarce, which motivated the beginning of this project. To study GRASPs, we used the only GRASP (called Grh1) of a model organism: the yeast Saccharomyces cereviseae. We showed that Grh1 contains regions of intrinsic disorder also in its GRASP domain, being classified as a molten globule. Besides, Grh1 is capable of forming amyloid-like fibrils when in specific conditions in vitro, such as low pH and moderately elevated temperature. With the aim of investigating a possible relationship between fibril formation and the role played by Grh1 in unconventional protein secretion, part of the present thesis was done in vivo, and it was possible to demonstrate that the yeast GRASP fibrillates in starvation and heat-shock conditions. Here, we discuss the use of Fluorescence Lifetime Imaging Microscopy as a valid technique to help detect fibril formation in cell and also the possible implications of fibrillation for the formation of the Compartments for Unconventional Protein Secretion (CUPS). This work also contains initial experiments that point to a liquid-liquid phase separation of Grh1, an observation in consonance with the findings of intrinsic disorder and the recent proposition that the Golgi is actually an organelle phase separated from the cytosol. Finally, we present initial experiments of the characterization of Bug1, the golgin partner of Grh1. There are no structural data available on golgins in solution yet and their purification always presented an obstacle on obtaining them. We describe here a protocol capable of purifying Bug1 in high quantities, therefore paving the way for many other discoveries in the fields of protein secretion and liquid-liquid phase separation.
publishDate 2021
dc.date.issued.fl_str_mv 2021-06-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.59.2021.tde-09082021-183946
url https://doi.org/10.11606/T.59.2021.tde-09082021-183946
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Física Aplicada à Medicina e Biologia
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794502600382480384