Topological equivalence for multiple saddle connections
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400002 |
Resumo: | We study the topological equivalence between two vector fields defined in the neighborhood of the skeleton of a normal crossings divisor in an ambient space of dimension three. We deal with singularities obtained from local ones by ambient blowing-ups: we impose thus the non-degeneracy condition that they are all hyperbolic without certain algebraic resonances in the set of eigenvalues. Once we cut-out the attractors, we get the result if the corresponding graph has no cycles. The case of cycles is of another nature, as the Dulac Problem in dimension three. |
id |
ABC-1_0389a3efdaeb71887b3e11f22b72c284 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652002000400002 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Topological equivalence for multiple saddle connectionssaddle connectionssingular vector fieldstopological equivalenceblowing upsWe study the topological equivalence between two vector fields defined in the neighborhood of the skeleton of a normal crossings divisor in an ambient space of dimension three. We deal with singularities obtained from local ones by ambient blowing-ups: we impose thus the non-degeneracy condition that they are all hyperbolic without certain algebraic resonances in the set of eigenvalues. Once we cut-out the attractors, we get the result if the corresponding graph has no cycles. The case of cycles is of another nature, as the Dulac Problem in dimension three.Academia Brasileira de Ciências2002-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400002Anais da Academia Brasileira de Ciências v.74 n.4 2002reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652002000400002info:eu-repo/semantics/openAccessALONSO,CLEMENTACAMACHO,MARIA IZABELCANO,FELIPEeng2003-01-24T00:00:00Zoai:scielo:S0001-37652002000400002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2003-01-24T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Topological equivalence for multiple saddle connections |
title |
Topological equivalence for multiple saddle connections |
spellingShingle |
Topological equivalence for multiple saddle connections ALONSO,CLEMENTA saddle connections singular vector fields topological equivalence blowing ups |
title_short |
Topological equivalence for multiple saddle connections |
title_full |
Topological equivalence for multiple saddle connections |
title_fullStr |
Topological equivalence for multiple saddle connections |
title_full_unstemmed |
Topological equivalence for multiple saddle connections |
title_sort |
Topological equivalence for multiple saddle connections |
author |
ALONSO,CLEMENTA |
author_facet |
ALONSO,CLEMENTA CAMACHO,MARIA IZABEL CANO,FELIPE |
author_role |
author |
author2 |
CAMACHO,MARIA IZABEL CANO,FELIPE |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
ALONSO,CLEMENTA CAMACHO,MARIA IZABEL CANO,FELIPE |
dc.subject.por.fl_str_mv |
saddle connections singular vector fields topological equivalence blowing ups |
topic |
saddle connections singular vector fields topological equivalence blowing ups |
description |
We study the topological equivalence between two vector fields defined in the neighborhood of the skeleton of a normal crossings divisor in an ambient space of dimension three. We deal with singularities obtained from local ones by ambient blowing-ups: we impose thus the non-degeneracy condition that they are all hyperbolic without certain algebraic resonances in the set of eigenvalues. Once we cut-out the attractors, we get the result if the corresponding graph has no cycles. The case of cycles is of another nature, as the Dulac Problem in dimension three. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652002000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.74 n.4 2002 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302855786790912 |