Systems with the integer rounding property in normal monomial subrings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000400002 |
Resumo: | Let C be a clutter and let A be its incidence matrix. If the linear system x > 0; x A < 1 has the integer rounding property, we give a description of the canonical module and the a-invariant of certain normal subrings associated to C. If the clutter is a connected graph, we describe when the aforementioned linear system has the integer rounding property in combinatorial and algebraic terms using graph theory and the theory of Rees algebras. As a consequence we show that the extended Rees algebra of the edge ideal of a bipartite graph is Gorenstein if and only if the graph is unmixed. |
id |
ABC-1_0c49cfac17373bd2c4f4086ecb4111ae |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652010000400002 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Systems with the integer rounding property in normal monomial subringscanonical modulea-invariantnormal idealperfect graphmaximal cliquesRees algebraEhrhart ringinteger rounding propertyLet C be a clutter and let A be its incidence matrix. If the linear system x > 0; x A < 1 has the integer rounding property, we give a description of the canonical module and the a-invariant of certain normal subrings associated to C. If the clutter is a connected graph, we describe when the aforementioned linear system has the integer rounding property in combinatorial and algebraic terms using graph theory and the theory of Rees algebras. As a consequence we show that the extended Rees algebra of the edge ideal of a bipartite graph is Gorenstein if and only if the graph is unmixed.Academia Brasileira de Ciências2010-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000400002Anais da Academia Brasileira de Ciências v.82 n.4 2010reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652010000400002info:eu-repo/semantics/openAccessDupont,Luis A.Rentería-Márquez,CarlosVillarreal,Rafael H.eng2011-02-28T00:00:00Zoai:scielo:S0001-37652010000400002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2011-02-28T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Systems with the integer rounding property in normal monomial subrings |
title |
Systems with the integer rounding property in normal monomial subrings |
spellingShingle |
Systems with the integer rounding property in normal monomial subrings Dupont,Luis A. canonical module a-invariant normal ideal perfect graph maximal cliques Rees algebra Ehrhart ring integer rounding property |
title_short |
Systems with the integer rounding property in normal monomial subrings |
title_full |
Systems with the integer rounding property in normal monomial subrings |
title_fullStr |
Systems with the integer rounding property in normal monomial subrings |
title_full_unstemmed |
Systems with the integer rounding property in normal monomial subrings |
title_sort |
Systems with the integer rounding property in normal monomial subrings |
author |
Dupont,Luis A. |
author_facet |
Dupont,Luis A. Rentería-Márquez,Carlos Villarreal,Rafael H. |
author_role |
author |
author2 |
Rentería-Márquez,Carlos Villarreal,Rafael H. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Dupont,Luis A. Rentería-Márquez,Carlos Villarreal,Rafael H. |
dc.subject.por.fl_str_mv |
canonical module a-invariant normal ideal perfect graph maximal cliques Rees algebra Ehrhart ring integer rounding property |
topic |
canonical module a-invariant normal ideal perfect graph maximal cliques Rees algebra Ehrhart ring integer rounding property |
description |
Let C be a clutter and let A be its incidence matrix. If the linear system x > 0; x A < 1 has the integer rounding property, we give a description of the canonical module and the a-invariant of certain normal subrings associated to C. If the clutter is a connected graph, we describe when the aforementioned linear system has the integer rounding property in combinatorial and algebraic terms using graph theory and the theory of Rees algebras. As a consequence we show that the extended Rees algebra of the edge ideal of a bipartite graph is Gorenstein if and only if the graph is unmixed. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652010000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.82 n.4 2010 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302857665839104 |