Closed form expressions for moments of the beta Weibull distribution

Detalhes bibliográficos
Autor(a) principal: Cordeiro,Gauss M
Data de Publicação: 2011
Outros Autores: Simas,Alexandre B, Stošic,Borko D
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652011000200002
Resumo: The beta Weibull distribution was first introduced by Famoye et al. (2005) and studied by these authors and Lee et al. (2007). However, they do not give explicit expressions for the moments. In this article, we derive explicit closed form expressions for the moments of this distribution, which generalize results available in the literature for some sub-models. We also obtain expansions for the cumulative distribution function and Rényi entropy. Further, we discuss maximum likelihood estimation and provide formulae for the elements of the expected information matrix. We also demonstrate the usefulness of this distribution on a real data set.
id ABC-1_147c78d457bff394892b0f756b78d299
oai_identifier_str oai:scielo:S0001-37652011000200002
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Closed form expressions for moments of the beta Weibull distributionbeta Weibull distributionexpected information matrixmaximum likelihoodmomentWeibull distributionThe beta Weibull distribution was first introduced by Famoye et al. (2005) and studied by these authors and Lee et al. (2007). However, they do not give explicit expressions for the moments. In this article, we derive explicit closed form expressions for the moments of this distribution, which generalize results available in the literature for some sub-models. We also obtain expansions for the cumulative distribution function and Rényi entropy. Further, we discuss maximum likelihood estimation and provide formulae for the elements of the expected information matrix. We also demonstrate the usefulness of this distribution on a real data set.Academia Brasileira de Ciências2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652011000200002Anais da Academia Brasileira de Ciências v.83 n.2 2011reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652011000200002info:eu-repo/semantics/openAccessCordeiro,Gauss MSimas,Alexandre BStošic,Borko Deng2011-06-03T00:00:00Zoai:scielo:S0001-37652011000200002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2011-06-03T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Closed form expressions for moments of the beta Weibull distribution
title Closed form expressions for moments of the beta Weibull distribution
spellingShingle Closed form expressions for moments of the beta Weibull distribution
Cordeiro,Gauss M
beta Weibull distribution
expected information matrix
maximum likelihood
moment
Weibull distribution
title_short Closed form expressions for moments of the beta Weibull distribution
title_full Closed form expressions for moments of the beta Weibull distribution
title_fullStr Closed form expressions for moments of the beta Weibull distribution
title_full_unstemmed Closed form expressions for moments of the beta Weibull distribution
title_sort Closed form expressions for moments of the beta Weibull distribution
author Cordeiro,Gauss M
author_facet Cordeiro,Gauss M
Simas,Alexandre B
Stošic,Borko D
author_role author
author2 Simas,Alexandre B
Stošic,Borko D
author2_role author
author
dc.contributor.author.fl_str_mv Cordeiro,Gauss M
Simas,Alexandre B
Stošic,Borko D
dc.subject.por.fl_str_mv beta Weibull distribution
expected information matrix
maximum likelihood
moment
Weibull distribution
topic beta Weibull distribution
expected information matrix
maximum likelihood
moment
Weibull distribution
description The beta Weibull distribution was first introduced by Famoye et al. (2005) and studied by these authors and Lee et al. (2007). However, they do not give explicit expressions for the moments. In this article, we derive explicit closed form expressions for the moments of this distribution, which generalize results available in the literature for some sub-models. We also obtain expansions for the cumulative distribution function and Rényi entropy. Further, we discuss maximum likelihood estimation and provide formulae for the elements of the expected information matrix. We also demonstrate the usefulness of this distribution on a real data set.
publishDate 2011
dc.date.none.fl_str_mv 2011-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652011000200002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652011000200002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652011000200002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.83 n.2 2011
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302857975169024