Reaction Mechanism of Magnesium in Roasting of Vanadium Slag
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000301104 |
Resumo: | Abstract The influence of magnesium on roasting vanadium slag was investigated by simulating the roasting process of vanadium by mixing V2O5 and MgO. The calcination products of V2O5 reacted with MgO at different temperatures which were characterized by X-ray diffraction (XRD), Thermogravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscope (SEM). There were two mass loss intervals, three endothermic peaks and one exothermic peak appearing during the reaction by the integrated thermal analysis as the temperature increased from room temperature to 1273.15 K. The samples of mixed V2O5 and MgO began to melt at 573.15 K and reacted at 773 K, and the shape of the particles changed from block to ovoid or irregular sphere at 773.15 K. With increasing the reaction temperature from 973.15 to 1073.15 K, the intermediate of VO2 was produced, and MgV2O6 was partially decomposed at 1073.15 K. During this process, the particle shape gradually returned to block shape. The conversion rate of vanadium is 99.4% with MgO of 1.65%. |
id |
ABC-1_2950aca75f3c74b2fc3ed05ed799da42 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652020000301104 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slagvanadium slagroastingsimulationmagnesiumAbstract The influence of magnesium on roasting vanadium slag was investigated by simulating the roasting process of vanadium by mixing V2O5 and MgO. The calcination products of V2O5 reacted with MgO at different temperatures which were characterized by X-ray diffraction (XRD), Thermogravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscope (SEM). There were two mass loss intervals, three endothermic peaks and one exothermic peak appearing during the reaction by the integrated thermal analysis as the temperature increased from room temperature to 1273.15 K. The samples of mixed V2O5 and MgO began to melt at 573.15 K and reacted at 773 K, and the shape of the particles changed from block to ovoid or irregular sphere at 773.15 K. With increasing the reaction temperature from 973.15 to 1073.15 K, the intermediate of VO2 was produced, and MgV2O6 was partially decomposed at 1073.15 K. During this process, the particle shape gradually returned to block shape. The conversion rate of vanadium is 99.4% with MgO of 1.65%.Academia Brasileira de Ciências2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000301104Anais da Academia Brasileira de Ciências v.92 n.2 2020reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765202020181062info:eu-repo/semantics/openAccessDONG,LIUXIANGXIN,XUEHE,YANGeng2020-07-03T00:00:00Zoai:scielo:S0001-37652020000301104Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2020-07-03T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
title |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
spellingShingle |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag DONG,LIU vanadium slag roasting simulation magnesium |
title_short |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
title_full |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
title_fullStr |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
title_full_unstemmed |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
title_sort |
Reaction Mechanism of Magnesium in Roasting of Vanadium Slag |
author |
DONG,LIU |
author_facet |
DONG,LIU XIANGXIN,XUE HE,YANG |
author_role |
author |
author2 |
XIANGXIN,XUE HE,YANG |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
DONG,LIU XIANGXIN,XUE HE,YANG |
dc.subject.por.fl_str_mv |
vanadium slag roasting simulation magnesium |
topic |
vanadium slag roasting simulation magnesium |
description |
Abstract The influence of magnesium on roasting vanadium slag was investigated by simulating the roasting process of vanadium by mixing V2O5 and MgO. The calcination products of V2O5 reacted with MgO at different temperatures which were characterized by X-ray diffraction (XRD), Thermogravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscope (SEM). There were two mass loss intervals, three endothermic peaks and one exothermic peak appearing during the reaction by the integrated thermal analysis as the temperature increased from room temperature to 1273.15 K. The samples of mixed V2O5 and MgO began to melt at 573.15 K and reacted at 773 K, and the shape of the particles changed from block to ovoid or irregular sphere at 773.15 K. With increasing the reaction temperature from 973.15 to 1073.15 K, the intermediate of VO2 was produced, and MgV2O6 was partially decomposed at 1073.15 K. During this process, the particle shape gradually returned to block shape. The conversion rate of vanadium is 99.4% with MgO of 1.65%. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000301104 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000301104 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765202020181062 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.92 n.2 2020 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302868931739648 |