X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability

Detalhes bibliográficos
Autor(a) principal: BENEDET,LUCAS
Data de Publicação: 2021
Outros Autores: NILSSON,MATHEUS S., SILVA,SÉRGIO HENRIQUE G., PELEGRINO,MARCELO H.P., MANCINI,MARCELO, MENEZES,MICHELE D. DE, GUILHERME,LUIZ ROBERTO G., CURI,NILTON
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000701504
Resumo: Abstract Portable X-ray fluorescence (pXRF) spectrometry offers valuable information for prediction models of soil fertility attributes spatial variation, although this approach is yet scarce in tropical regions. This study aims to predict and build spatial variability maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and Random Forest (RF) in a highly variable tropical area. Composite samples from soil A horizon were collected at 90 points throughout the campus of the Federal University of Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55, respectively). Attributes that showed higher R² in punctual predictions also exhibited higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used to assist prediction models for soil fertility attributes, consequently enabling the digital mapping of such attributes and helping to improve the knowledge about the spatial variability of such attributes in soils of tropical climate. This technique can therefore assist in the identification and orientation of adequate management practices in tropical agricultural practices.
id ABC-1_45efe4a072e5b51ac65ca7af050b7e79
oai_identifier_str oai:scielo:S0001-37652021000701504
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variabilityProximal sensorrandom forestspatial predictiontropical soilsAbstract Portable X-ray fluorescence (pXRF) spectrometry offers valuable information for prediction models of soil fertility attributes spatial variation, although this approach is yet scarce in tropical regions. This study aims to predict and build spatial variability maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and Random Forest (RF) in a highly variable tropical area. Composite samples from soil A horizon were collected at 90 points throughout the campus of the Federal University of Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55, respectively). Attributes that showed higher R² in punctual predictions also exhibited higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used to assist prediction models for soil fertility attributes, consequently enabling the digital mapping of such attributes and helping to improve the knowledge about the spatial variability of such attributes in soils of tropical climate. This technique can therefore assist in the identification and orientation of adequate management practices in tropical agricultural practices.Academia Brasileira de Ciências2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000701504Anais da Academia Brasileira de Ciências v.93 n.4 2021reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765202120200646info:eu-repo/semantics/openAccessBENEDET,LUCASNILSSON,MATHEUS S.SILVA,SÉRGIO HENRIQUE G.PELEGRINO,MARCELO H.P.MANCINI,MARCELOMENEZES,MICHELE D. DEGUILHERME,LUIZ ROBERTO G.CURI,NILTONeng2021-09-15T00:00:00Zoai:scielo:S0001-37652021000701504Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2021-09-15T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
title X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
spellingShingle X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
BENEDET,LUCAS
Proximal sensor
random forest
spatial prediction
tropical soils
title_short X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
title_full X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
title_fullStr X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
title_full_unstemmed X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
title_sort X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability
author BENEDET,LUCAS
author_facet BENEDET,LUCAS
NILSSON,MATHEUS S.
SILVA,SÉRGIO HENRIQUE G.
PELEGRINO,MARCELO H.P.
MANCINI,MARCELO
MENEZES,MICHELE D. DE
GUILHERME,LUIZ ROBERTO G.
CURI,NILTON
author_role author
author2 NILSSON,MATHEUS S.
SILVA,SÉRGIO HENRIQUE G.
PELEGRINO,MARCELO H.P.
MANCINI,MARCELO
MENEZES,MICHELE D. DE
GUILHERME,LUIZ ROBERTO G.
CURI,NILTON
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv BENEDET,LUCAS
NILSSON,MATHEUS S.
SILVA,SÉRGIO HENRIQUE G.
PELEGRINO,MARCELO H.P.
MANCINI,MARCELO
MENEZES,MICHELE D. DE
GUILHERME,LUIZ ROBERTO G.
CURI,NILTON
dc.subject.por.fl_str_mv Proximal sensor
random forest
spatial prediction
tropical soils
topic Proximal sensor
random forest
spatial prediction
tropical soils
description Abstract Portable X-ray fluorescence (pXRF) spectrometry offers valuable information for prediction models of soil fertility attributes spatial variation, although this approach is yet scarce in tropical regions. This study aims to predict and build spatial variability maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and Random Forest (RF) in a highly variable tropical area. Composite samples from soil A horizon were collected at 90 points throughout the campus of the Federal University of Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55, respectively). Attributes that showed higher R² in punctual predictions also exhibited higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used to assist prediction models for soil fertility attributes, consequently enabling the digital mapping of such attributes and helping to improve the knowledge about the spatial variability of such attributes in soils of tropical climate. This technique can therefore assist in the identification and orientation of adequate management practices in tropical agricultural practices.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000701504
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000701504
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765202120200646
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.93 n.4 2021
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302870939762688