Entropy Generation Minimization Analysis of Active Magnetic Regenerators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717 |
Resumo: | Abstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity. |
id |
ABC-1_5891b57d0d792fc3f6c531c5f0ce0a9a |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652017000200717 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Entropy Generation Minimization Analysis of Active Magnetic RegeneratorsActive Magnetic Regenerator (AMR)magnetic refrigerationPerformance Evaluation Criteria (PEC)entropy generation minimizationAbstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity.Academia Brasileira de Ciências2017-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717Anais da Academia Brasileira de Ciências v.89 n.1 suppl.0 2017reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201720160427info:eu-repo/semantics/openAccessTREVIZOLI,PAULO V.BARBOSA JR,JADER R.eng2017-05-26T00:00:00Zoai:scielo:S0001-37652017000200717Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2017-05-26T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
title |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
spellingShingle |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators TREVIZOLI,PAULO V. Active Magnetic Regenerator (AMR) magnetic refrigeration Performance Evaluation Criteria (PEC) entropy generation minimization |
title_short |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
title_full |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
title_fullStr |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
title_full_unstemmed |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
title_sort |
Entropy Generation Minimization Analysis of Active Magnetic Regenerators |
author |
TREVIZOLI,PAULO V. |
author_facet |
TREVIZOLI,PAULO V. BARBOSA JR,JADER R. |
author_role |
author |
author2 |
BARBOSA JR,JADER R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
TREVIZOLI,PAULO V. BARBOSA JR,JADER R. |
dc.subject.por.fl_str_mv |
Active Magnetic Regenerator (AMR) magnetic refrigeration Performance Evaluation Criteria (PEC) entropy generation minimization |
topic |
Active Magnetic Regenerator (AMR) magnetic refrigeration Performance Evaluation Criteria (PEC) entropy generation minimization |
description |
Abstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201720160427 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.89 n.1 suppl.0 2017 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302863523184640 |