Entropy Generation Minimization Analysis of Active Magnetic Regenerators

Detalhes bibliográficos
Autor(a) principal: TREVIZOLI,PAULO V.
Data de Publicação: 2017
Outros Autores: BARBOSA JR,JADER R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717
Resumo: Abstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity.
id ABC-1_5891b57d0d792fc3f6c531c5f0ce0a9a
oai_identifier_str oai:scielo:S0001-37652017000200717
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Entropy Generation Minimization Analysis of Active Magnetic RegeneratorsActive Magnetic Regenerator (AMR)magnetic refrigerationPerformance Evaluation Criteria (PEC)entropy generation minimizationAbstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity.Academia Brasileira de Ciências2017-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717Anais da Academia Brasileira de Ciências v.89 n.1 suppl.0 2017reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201720160427info:eu-repo/semantics/openAccessTREVIZOLI,PAULO V.BARBOSA JR,JADER R.eng2017-05-26T00:00:00Zoai:scielo:S0001-37652017000200717Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2017-05-26T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Entropy Generation Minimization Analysis of Active Magnetic Regenerators
title Entropy Generation Minimization Analysis of Active Magnetic Regenerators
spellingShingle Entropy Generation Minimization Analysis of Active Magnetic Regenerators
TREVIZOLI,PAULO V.
Active Magnetic Regenerator (AMR)
magnetic refrigeration
Performance Evaluation Criteria (PEC)
entropy generation minimization
title_short Entropy Generation Minimization Analysis of Active Magnetic Regenerators
title_full Entropy Generation Minimization Analysis of Active Magnetic Regenerators
title_fullStr Entropy Generation Minimization Analysis of Active Magnetic Regenerators
title_full_unstemmed Entropy Generation Minimization Analysis of Active Magnetic Regenerators
title_sort Entropy Generation Minimization Analysis of Active Magnetic Regenerators
author TREVIZOLI,PAULO V.
author_facet TREVIZOLI,PAULO V.
BARBOSA JR,JADER R.
author_role author
author2 BARBOSA JR,JADER R.
author2_role author
dc.contributor.author.fl_str_mv TREVIZOLI,PAULO V.
BARBOSA JR,JADER R.
dc.subject.por.fl_str_mv Active Magnetic Regenerator (AMR)
magnetic refrigeration
Performance Evaluation Criteria (PEC)
entropy generation minimization
topic Active Magnetic Regenerator (AMR)
magnetic refrigeration
Performance Evaluation Criteria (PEC)
entropy generation minimization
description Abstract A performance assessment of active magnetocaloric regenerators using entropy generation minimization is presented. The model consists of the Brinkman-Forchheimer equation to describe the fluid flow and coupled energy equations for the fluid and solid phases. Entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are considered. Based on the velocity and temperature profiles, local rates of entropy generation per unit volume were integrated to give the cycle-average entropy generation in the regenerator, which is the objective function of the optimization procedure. The solid matrix is a bed of gadolinium spherical particles and the working fluid is water. Performance evaluation criteria of fixed cross-section (face) area (FA) and variable geometry (VG) are incorporated into the optimization procedure to identify the most appropriate parameters and operating conditions under fixed constraints of specified temperature span and cooling capacity.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000200717
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765201720160427
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.89 n.1 suppl.0 2017
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302863523184640