Hypersurfaces with constant mean curvature and two principal curvatures in n+1

Detalhes bibliográficos
Autor(a) principal: Alías,Luis J.
Data de Publicação: 2004
Outros Autores: Almeida,Sebastião C. de, Brasil Jr.,Aldir
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003
Resumo: In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.
id ABC-1_74379ffbc53d5f31a4e1a82cbf8fbb01
oai_identifier_str oai:scielo:S0001-37652004000300003
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Hypersurfaces with constant mean curvature and two principal curvatures in n+1Hypersurfacesconstant mean curvatureSimons formulaH(r)-torusIn this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.Academia Brasileira de Ciências2004-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003Anais da Academia Brasileira de Ciências v.76 n.3 2004reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652004000300003info:eu-repo/semantics/openAccessAlías,Luis J.Almeida,Sebastião C. deBrasil Jr.,Aldireng2004-08-20T00:00:00Zoai:scielo:S0001-37652004000300003Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2004-08-20T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title Hypersurfaces with constant mean curvature and two principal curvatures in n+1
spellingShingle Hypersurfaces with constant mean curvature and two principal curvatures in n+1
Alías,Luis J.
Hypersurfaces
constant mean curvature
Simons formula
H(r)-torus
title_short Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_full Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_fullStr Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_full_unstemmed Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_sort Hypersurfaces with constant mean curvature and two principal curvatures in n+1
author Alías,Luis J.
author_facet Alías,Luis J.
Almeida,Sebastião C. de
Brasil Jr.,Aldir
author_role author
author2 Almeida,Sebastião C. de
Brasil Jr.,Aldir
author2_role author
author
dc.contributor.author.fl_str_mv Alías,Luis J.
Almeida,Sebastião C. de
Brasil Jr.,Aldir
dc.subject.por.fl_str_mv Hypersurfaces
constant mean curvature
Simons formula
H(r)-torus
topic Hypersurfaces
constant mean curvature
Simons formula
H(r)-torus
description In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.
publishDate 2004
dc.date.none.fl_str_mv 2004-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652004000300003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.76 n.3 2004
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302856149598208