Hypersurfaces with constant mean curvature and two principal curvatures in n+1
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003 |
Resumo: | In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus. |
id |
ABC-1_74379ffbc53d5f31a4e1a82cbf8fbb01 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652004000300003 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1Hypersurfacesconstant mean curvatureSimons formulaH(r)-torusIn this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.Academia Brasileira de Ciências2004-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003Anais da Academia Brasileira de Ciências v.76 n.3 2004reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652004000300003info:eu-repo/semantics/openAccessAlías,Luis J.Almeida,Sebastião C. deBrasil Jr.,Aldireng2004-08-20T00:00:00Zoai:scielo:S0001-37652004000300003Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2004-08-20T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
title |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
spellingShingle |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 Alías,Luis J. Hypersurfaces constant mean curvature Simons formula H(r)-torus |
title_short |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
title_full |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
title_fullStr |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
title_full_unstemmed |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
title_sort |
Hypersurfaces with constant mean curvature and two principal curvatures in n+1 |
author |
Alías,Luis J. |
author_facet |
Alías,Luis J. Almeida,Sebastião C. de Brasil Jr.,Aldir |
author_role |
author |
author2 |
Almeida,Sebastião C. de Brasil Jr.,Aldir |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Alías,Luis J. Almeida,Sebastião C. de Brasil Jr.,Aldir |
dc.subject.por.fl_str_mv |
Hypersurfaces constant mean curvature Simons formula H(r)-torus |
topic |
Hypersurfaces constant mean curvature Simons formula H(r)-torus |
description |
In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652004000300003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.76 n.3 2004 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302856149598208 |