The Log-Odd Normal Generalized Family of Distributions with Application
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300203 |
Resumo: | Abstract: The normal distribution has a central place in distribution theory and statistics. We propose the log-odd normal generalized (LONG) family of distributions based on log-odds and obtain some of its mathematical properties including a useful linear representation for the new family. We investigate, as a special model, the log-odd normal power-Cauchy (LONPC) distribution. Some structural properties of LONPC distribution are obtained including quantile function, ordinary and incomplete moments, generating function and some asymptotics. We estimate the model parameters using the maximum likelihood method. The usefulness of the proposed family is proved empirically by means of a real air pollution data set. |
id |
ABC-1_76457c522271d1016cdd640c662833e8 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652019000300203 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
The Log-Odd Normal Generalized Family of Distributions with ApplicationGeneralized classmaximum likelihood estimationnormal distributionpower-Cauchy distributionShannon entropyAbstract: The normal distribution has a central place in distribution theory and statistics. We propose the log-odd normal generalized (LONG) family of distributions based on log-odds and obtain some of its mathematical properties including a useful linear representation for the new family. We investigate, as a special model, the log-odd normal power-Cauchy (LONPC) distribution. Some structural properties of LONPC distribution are obtained including quantile function, ordinary and incomplete moments, generating function and some asymptotics. We estimate the model parameters using the maximum likelihood method. The usefulness of the proposed family is proved empirically by means of a real air pollution data set.Academia Brasileira de Ciências2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300203Anais da Academia Brasileira de Ciências v.91 n.2 2019reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201920180207info:eu-repo/semantics/openAccessZUBAIR,MUHAMMADPOGÁNY,TIBOR K.CORDEIRO,GAUSS M.TAHIR,MUHAMMAD H.eng2019-06-27T00:00:00Zoai:scielo:S0001-37652019000300203Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2019-06-27T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
The Log-Odd Normal Generalized Family of Distributions with Application |
title |
The Log-Odd Normal Generalized Family of Distributions with Application |
spellingShingle |
The Log-Odd Normal Generalized Family of Distributions with Application ZUBAIR,MUHAMMAD Generalized class maximum likelihood estimation normal distribution power-Cauchy distribution Shannon entropy |
title_short |
The Log-Odd Normal Generalized Family of Distributions with Application |
title_full |
The Log-Odd Normal Generalized Family of Distributions with Application |
title_fullStr |
The Log-Odd Normal Generalized Family of Distributions with Application |
title_full_unstemmed |
The Log-Odd Normal Generalized Family of Distributions with Application |
title_sort |
The Log-Odd Normal Generalized Family of Distributions with Application |
author |
ZUBAIR,MUHAMMAD |
author_facet |
ZUBAIR,MUHAMMAD POGÁNY,TIBOR K. CORDEIRO,GAUSS M. TAHIR,MUHAMMAD H. |
author_role |
author |
author2 |
POGÁNY,TIBOR K. CORDEIRO,GAUSS M. TAHIR,MUHAMMAD H. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
ZUBAIR,MUHAMMAD POGÁNY,TIBOR K. CORDEIRO,GAUSS M. TAHIR,MUHAMMAD H. |
dc.subject.por.fl_str_mv |
Generalized class maximum likelihood estimation normal distribution power-Cauchy distribution Shannon entropy |
topic |
Generalized class maximum likelihood estimation normal distribution power-Cauchy distribution Shannon entropy |
description |
Abstract: The normal distribution has a central place in distribution theory and statistics. We propose the log-odd normal generalized (LONG) family of distributions based on log-odds and obtain some of its mathematical properties including a useful linear representation for the new family. We investigate, as a special model, the log-odd normal power-Cauchy (LONPC) distribution. Some structural properties of LONPC distribution are obtained including quantile function, ordinary and incomplete moments, generating function and some asymptotics. We estimate the model parameters using the maximum likelihood method. The usefulness of the proposed family is proved empirically by means of a real air pollution data set. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300203 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300203 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201920180207 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.91 n.2 2019 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302867301203968 |