6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway

Detalhes bibliográficos
Autor(a) principal: ZHAO,XIAO-E
Data de Publicação: 2019
Outros Autores: YANG,ZHENSHAN, GAO,ZHEN, GE,JUNBANG, WEI,QIANG, MA,BAOHUA
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000100610
Resumo: This study aimed to investigate how 6-bromoindirubin-3’-oxime (BIO) increases the osteogenic differentiation of canine bone mesenchymal stem cells (BMSCs) and the role of the Wnt/β-catenin signaling pathway in this process. We mimicked the effect of Wnt by adding BIO to the culture medium of BMSCs and examined whether canonical Wnt signaling positively affects the differentiation of these cells into osteoblasts. Canine BMSCs were cultured with 0.5 and 1.0 μM BIO under osteogenic conditions and then differentiation markers were investigated. It was found that BIO significantly increased the activity of alkaline phosphatase (ALP), the number of ALP-positive cells, the mineralization level and calcium deposits. Moreover, cells cultured with 0.5 and 1.0 μM BIO exhibited detectable β-catenin expression in their nuclei, and showed upregulated β-catenin and glycogen synthase kinase 3 beta(GSK3β) phosphorylation compared to untreated cells. In addition, BIO enhanced the mRNA expression of osteoblast differentiation markers such as ALP, runt-related transcription factor 2, collagen I, osteocalcin, and osteonectin. In conclusion, BIO upregulated GSK3β phosphorylation and inhibited its activity, thereby activating the Wnt/β-catenin signaling pathway and promoting the osteogenic differentiation of canine BMSCs. The effect of 1.0 μM BIO on BMSCs differentiation was stronger than that of 0.5 μM BIO.
id ABC-1_7f6a677383b10025aa0613a3fe3791f2
oai_identifier_str oai:scielo:S0001-37652019000100610
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathwayBone mesenchymal stem cellsbromoindirubin oximeosteogenetic differentiationcanineThis study aimed to investigate how 6-bromoindirubin-3’-oxime (BIO) increases the osteogenic differentiation of canine bone mesenchymal stem cells (BMSCs) and the role of the Wnt/β-catenin signaling pathway in this process. We mimicked the effect of Wnt by adding BIO to the culture medium of BMSCs and examined whether canonical Wnt signaling positively affects the differentiation of these cells into osteoblasts. Canine BMSCs were cultured with 0.5 and 1.0 μM BIO under osteogenic conditions and then differentiation markers were investigated. It was found that BIO significantly increased the activity of alkaline phosphatase (ALP), the number of ALP-positive cells, the mineralization level and calcium deposits. Moreover, cells cultured with 0.5 and 1.0 μM BIO exhibited detectable β-catenin expression in their nuclei, and showed upregulated β-catenin and glycogen synthase kinase 3 beta(GSK3β) phosphorylation compared to untreated cells. In addition, BIO enhanced the mRNA expression of osteoblast differentiation markers such as ALP, runt-related transcription factor 2, collagen I, osteocalcin, and osteonectin. In conclusion, BIO upregulated GSK3β phosphorylation and inhibited its activity, thereby activating the Wnt/β-catenin signaling pathway and promoting the osteogenic differentiation of canine BMSCs. The effect of 1.0 μM BIO on BMSCs differentiation was stronger than that of 0.5 μM BIO.Academia Brasileira de Ciências2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000100610Anais da Academia Brasileira de Ciências v.91 n.1 2019reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201920180459info:eu-repo/semantics/openAccessZHAO,XIAO-EYANG,ZHENSHANGAO,ZHENGE,JUNBANGWEI,QIANGMA,BAOHUAeng2019-03-18T00:00:00Zoai:scielo:S0001-37652019000100610Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2019-03-18T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
title 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
spellingShingle 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
ZHAO,XIAO-E
Bone mesenchymal stem cells
bromoindirubin oxime
osteogenetic differentiation
canine
title_short 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
title_full 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
title_fullStr 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
title_full_unstemmed 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
title_sort 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway
author ZHAO,XIAO-E
author_facet ZHAO,XIAO-E
YANG,ZHENSHAN
GAO,ZHEN
GE,JUNBANG
WEI,QIANG
MA,BAOHUA
author_role author
author2 YANG,ZHENSHAN
GAO,ZHEN
GE,JUNBANG
WEI,QIANG
MA,BAOHUA
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv ZHAO,XIAO-E
YANG,ZHENSHAN
GAO,ZHEN
GE,JUNBANG
WEI,QIANG
MA,BAOHUA
dc.subject.por.fl_str_mv Bone mesenchymal stem cells
bromoindirubin oxime
osteogenetic differentiation
canine
topic Bone mesenchymal stem cells
bromoindirubin oxime
osteogenetic differentiation
canine
description This study aimed to investigate how 6-bromoindirubin-3’-oxime (BIO) increases the osteogenic differentiation of canine bone mesenchymal stem cells (BMSCs) and the role of the Wnt/β-catenin signaling pathway in this process. We mimicked the effect of Wnt by adding BIO to the culture medium of BMSCs and examined whether canonical Wnt signaling positively affects the differentiation of these cells into osteoblasts. Canine BMSCs were cultured with 0.5 and 1.0 μM BIO under osteogenic conditions and then differentiation markers were investigated. It was found that BIO significantly increased the activity of alkaline phosphatase (ALP), the number of ALP-positive cells, the mineralization level and calcium deposits. Moreover, cells cultured with 0.5 and 1.0 μM BIO exhibited detectable β-catenin expression in their nuclei, and showed upregulated β-catenin and glycogen synthase kinase 3 beta(GSK3β) phosphorylation compared to untreated cells. In addition, BIO enhanced the mRNA expression of osteoblast differentiation markers such as ALP, runt-related transcription factor 2, collagen I, osteocalcin, and osteonectin. In conclusion, BIO upregulated GSK3β phosphorylation and inhibited its activity, thereby activating the Wnt/β-catenin signaling pathway and promoting the osteogenic differentiation of canine BMSCs. The effect of 1.0 μM BIO on BMSCs differentiation was stronger than that of 0.5 μM BIO.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000100610
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000100610
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765201920180459
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.91 n.1 2019
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302867211026432