Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation

Detalhes bibliográficos
Autor(a) principal: BRIÑEZ-ORTEGA,EDWIN
Data de Publicação: 2020
Outros Autores: ALMEIDA,VERA L. DE, LOPES,JULIO C.D., BURGOS,ANA E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000500509
Resumo: Abstract Silver complexes containing 1,10-phenanthroline as a coordinated ligand have been of great interest due to their antibacterial and antifungal pharmacological properties. In this paper, we describe the synthesis of a new partial inclusion complex of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin (β-CD) which was synthesized with a good yield. The compounds were characterized by FTIR, 1H, 13C NMR including 1H−1H COSY, TGA/DSC, elemental analysis (CHN), and X-ray powder diffraction. The results suggest the presence of non-covalent interactions such as hydrogen bonds, van der Waals forces, and hydrophobic interactions in the formation of the partial inclusion compound between β-CD and bis(1,10-phenanthroline)silver(I) salicylate [Ag(phen)2]salH. Additionally, an in silico prediction of 1,10-phenanthroline biological activities was carried out and the acquired data suggests several potential targets associated with the antimicrobial activity of this compound and its silver complex. Most predicted targets are related to antimicrobial virulence and resistance that are a serious threat to global public health. The inclusion compound showed a higher inhibiting growth of Candida albicans than the free complex [Ag(phen)2]salH indicating that the formation of the inclusion complex with β-CD increases the bioavailability of the antimicrobial active species [Ag(phen)2]+ of the new silver(I) compound.
id ABC-1_81d138b1ffe7816fc73ec614d6dbe768
oai_identifier_str oai:scielo:S0001-37652020000500509
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluationBis(110-phenanthroline)silver(I)β-cyclodextrinin silico predictionSVM modelingantimicrobialAbstract Silver complexes containing 1,10-phenanthroline as a coordinated ligand have been of great interest due to their antibacterial and antifungal pharmacological properties. In this paper, we describe the synthesis of a new partial inclusion complex of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin (β-CD) which was synthesized with a good yield. The compounds were characterized by FTIR, 1H, 13C NMR including 1H−1H COSY, TGA/DSC, elemental analysis (CHN), and X-ray powder diffraction. The results suggest the presence of non-covalent interactions such as hydrogen bonds, van der Waals forces, and hydrophobic interactions in the formation of the partial inclusion compound between β-CD and bis(1,10-phenanthroline)silver(I) salicylate [Ag(phen)2]salH. Additionally, an in silico prediction of 1,10-phenanthroline biological activities was carried out and the acquired data suggests several potential targets associated with the antimicrobial activity of this compound and its silver complex. Most predicted targets are related to antimicrobial virulence and resistance that are a serious threat to global public health. The inclusion compound showed a higher inhibiting growth of Candida albicans than the free complex [Ag(phen)2]salH indicating that the formation of the inclusion complex with β-CD increases the bioavailability of the antimicrobial active species [Ag(phen)2]+ of the new silver(I) compound.Academia Brasileira de Ciências2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000500509Anais da Academia Brasileira de Ciências v.92 n.3 2020reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765202020181323info:eu-repo/semantics/openAccessBRIÑEZ-ORTEGA,EDWINALMEIDA,VERA L. DELOPES,JULIO C.D.BURGOS,ANA E.eng2020-11-25T00:00:00Zoai:scielo:S0001-37652020000500509Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2020-11-25T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
title Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
spellingShingle Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
BRIÑEZ-ORTEGA,EDWIN
Bis(1
10-phenanthroline)silver(I)
β-cyclodextrin
in silico prediction
SVM modeling
antimicrobial
title_short Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
title_full Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
title_fullStr Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
title_full_unstemmed Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
title_sort Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation
author BRIÑEZ-ORTEGA,EDWIN
author_facet BRIÑEZ-ORTEGA,EDWIN
ALMEIDA,VERA L. DE
LOPES,JULIO C.D.
BURGOS,ANA E.
author_role author
author2 ALMEIDA,VERA L. DE
LOPES,JULIO C.D.
BURGOS,ANA E.
author2_role author
author
author
dc.contributor.author.fl_str_mv BRIÑEZ-ORTEGA,EDWIN
ALMEIDA,VERA L. DE
LOPES,JULIO C.D.
BURGOS,ANA E.
dc.subject.por.fl_str_mv Bis(1
10-phenanthroline)silver(I)
β-cyclodextrin
in silico prediction
SVM modeling
antimicrobial
topic Bis(1
10-phenanthroline)silver(I)
β-cyclodextrin
in silico prediction
SVM modeling
antimicrobial
description Abstract Silver complexes containing 1,10-phenanthroline as a coordinated ligand have been of great interest due to their antibacterial and antifungal pharmacological properties. In this paper, we describe the synthesis of a new partial inclusion complex of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin (β-CD) which was synthesized with a good yield. The compounds were characterized by FTIR, 1H, 13C NMR including 1H−1H COSY, TGA/DSC, elemental analysis (CHN), and X-ray powder diffraction. The results suggest the presence of non-covalent interactions such as hydrogen bonds, van der Waals forces, and hydrophobic interactions in the formation of the partial inclusion compound between β-CD and bis(1,10-phenanthroline)silver(I) salicylate [Ag(phen)2]salH. Additionally, an in silico prediction of 1,10-phenanthroline biological activities was carried out and the acquired data suggests several potential targets associated with the antimicrobial activity of this compound and its silver complex. Most predicted targets are related to antimicrobial virulence and resistance that are a serious threat to global public health. The inclusion compound showed a higher inhibiting growth of Candida albicans than the free complex [Ag(phen)2]salH indicating that the formation of the inclusion complex with β-CD increases the bioavailability of the antimicrobial active species [Ag(phen)2]+ of the new silver(I) compound.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000500509
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652020000500509
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765202020181323
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.92 n.3 2020
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302869276721152