Objective and subjective prior distributions for the Gompertz distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000602643 |
Resumo: | Abstract This paper takes into account the estimation for the unknown parameters of the Gompertz distribution from the frequentist and Bayesian view points by using both objective and subjective prior distributions. We first derive non-informative priors using formal rules, such as Jefreys prior and maximal data information prior (MDIP), based on Fisher information and entropy, respectively. We also propose a prior distribution that incorporate the expert’s knowledge about the issue under study. In this regard, we assume two independent gamma distributions for the parameters of the Gompertz distribution and it is employed for an elicitation process based on the predictive prior distribution by using Laplace approximation for integrals. We suppose that an expert can summarize his/her knowledge about the reliability of an item through statements of percentiles. We also present a set of priors proposed by Singpurwala assuming a truncated normal prior distribution for the median of distribution and a gamma prior for the scale parameter. Next, we investigate the effects of these priors in the posterior estimates of the parameters of the Gompertz distribution. The Bayes estimates are computed using Markov Chain Monte Carlo (MCMC) algorithm. An extensive numerical simulation is carried out to evaluate the performance of the maximum likelihood estimates and Bayes estimates based on bias, mean-squared error and coverage probabilities. Finally, a real data set have been analyzed for illustrative purposes. |
id |
ABC-1_9bd6a1bd214f9a642644c18b0a16e4ff |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652018000602643 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Objective and subjective prior distributions for the Gompertz distributionGompertz distributionobjective priorJeffreys priorsubjective priormaximal data information priorelicitationAbstract This paper takes into account the estimation for the unknown parameters of the Gompertz distribution from the frequentist and Bayesian view points by using both objective and subjective prior distributions. We first derive non-informative priors using formal rules, such as Jefreys prior and maximal data information prior (MDIP), based on Fisher information and entropy, respectively. We also propose a prior distribution that incorporate the expert’s knowledge about the issue under study. In this regard, we assume two independent gamma distributions for the parameters of the Gompertz distribution and it is employed for an elicitation process based on the predictive prior distribution by using Laplace approximation for integrals. We suppose that an expert can summarize his/her knowledge about the reliability of an item through statements of percentiles. We also present a set of priors proposed by Singpurwala assuming a truncated normal prior distribution for the median of distribution and a gamma prior for the scale parameter. Next, we investigate the effects of these priors in the posterior estimates of the parameters of the Gompertz distribution. The Bayes estimates are computed using Markov Chain Monte Carlo (MCMC) algorithm. An extensive numerical simulation is carried out to evaluate the performance of the maximum likelihood estimates and Bayes estimates based on bias, mean-squared error and coverage probabilities. Finally, a real data set have been analyzed for illustrative purposes.Academia Brasileira de Ciências2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000602643Anais da Academia Brasileira de Ciências v.90 n.3 2018reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201820171040info:eu-repo/semantics/openAccessMOALA,FERNANDO A.DEY,SANKUeng2019-11-29T00:00:00Zoai:scielo:S0001-37652018000602643Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2019-11-29T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Objective and subjective prior distributions for the Gompertz distribution |
title |
Objective and subjective prior distributions for the Gompertz distribution |
spellingShingle |
Objective and subjective prior distributions for the Gompertz distribution MOALA,FERNANDO A. Gompertz distribution objective prior Jeffreys prior subjective prior maximal data information prior elicitation |
title_short |
Objective and subjective prior distributions for the Gompertz distribution |
title_full |
Objective and subjective prior distributions for the Gompertz distribution |
title_fullStr |
Objective and subjective prior distributions for the Gompertz distribution |
title_full_unstemmed |
Objective and subjective prior distributions for the Gompertz distribution |
title_sort |
Objective and subjective prior distributions for the Gompertz distribution |
author |
MOALA,FERNANDO A. |
author_facet |
MOALA,FERNANDO A. DEY,SANKU |
author_role |
author |
author2 |
DEY,SANKU |
author2_role |
author |
dc.contributor.author.fl_str_mv |
MOALA,FERNANDO A. DEY,SANKU |
dc.subject.por.fl_str_mv |
Gompertz distribution objective prior Jeffreys prior subjective prior maximal data information prior elicitation |
topic |
Gompertz distribution objective prior Jeffreys prior subjective prior maximal data information prior elicitation |
description |
Abstract This paper takes into account the estimation for the unknown parameters of the Gompertz distribution from the frequentist and Bayesian view points by using both objective and subjective prior distributions. We first derive non-informative priors using formal rules, such as Jefreys prior and maximal data information prior (MDIP), based on Fisher information and entropy, respectively. We also propose a prior distribution that incorporate the expert’s knowledge about the issue under study. In this regard, we assume two independent gamma distributions for the parameters of the Gompertz distribution and it is employed for an elicitation process based on the predictive prior distribution by using Laplace approximation for integrals. We suppose that an expert can summarize his/her knowledge about the reliability of an item through statements of percentiles. We also present a set of priors proposed by Singpurwala assuming a truncated normal prior distribution for the median of distribution and a gamma prior for the scale parameter. Next, we investigate the effects of these priors in the posterior estimates of the parameters of the Gompertz distribution. The Bayes estimates are computed using Markov Chain Monte Carlo (MCMC) algorithm. An extensive numerical simulation is carried out to evaluate the performance of the maximum likelihood estimates and Bayes estimates based on bias, mean-squared error and coverage probabilities. Finally, a real data set have been analyzed for illustrative purposes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000602643 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000602643 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201820171040 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.90 n.3 2018 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302866018795520 |