Weak convergence under nonlinearities

Detalhes bibliográficos
Autor(a) principal: MOREIRA,DIEGO R.
Data de Publicação: 2003
Outros Autores: TEIXEIRA,EDUARDO V. O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000100002
Resumo: In this paper, we prove that if a Nemytskii operator maps Lp(omega, E) into Lq(omega, F), for p, q greater than 1, E, F separable Banach spaces and F reflexive, then a sequence that converge weakly and a.e. is sent to a weakly convergent sequence. We give a counterexample proving that if q = 1 and p is greater than 1 we may not have weak sequential continuity of such operator. However, we prove that if p = q = 1, then a weakly convergent sequence that converges a.e. is mapped into a weakly convergent sequence by a Nemytskii operator. We show an application of the weak continuity of the Nemytskii operators by solving a nonlinear functional equation on W1,p(omega), providing the weak continuity of some kind of resolvent operator associated to it and getting a regularity result for such solution.
id ABC-1_a63087477b4b7f7f9794cc22359640f7
oai_identifier_str oai:scielo:S0001-37652003000100002
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Weak convergence under nonlinearitiesweak continuitynonlinearitiesNemytskii operatorIn this paper, we prove that if a Nemytskii operator maps Lp(omega, E) into Lq(omega, F), for p, q greater than 1, E, F separable Banach spaces and F reflexive, then a sequence that converge weakly and a.e. is sent to a weakly convergent sequence. We give a counterexample proving that if q = 1 and p is greater than 1 we may not have weak sequential continuity of such operator. However, we prove that if p = q = 1, then a weakly convergent sequence that converges a.e. is mapped into a weakly convergent sequence by a Nemytskii operator. We show an application of the weak continuity of the Nemytskii operators by solving a nonlinear functional equation on W1,p(omega), providing the weak continuity of some kind of resolvent operator associated to it and getting a regularity result for such solution.Academia Brasileira de Ciências2003-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000100002Anais da Academia Brasileira de Ciências v.75 n.1 2003reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652003000100002info:eu-repo/semantics/openAccessMOREIRA,DIEGO R.TEIXEIRA,EDUARDO V. O.eng2003-04-17T00:00:00Zoai:scielo:S0001-37652003000100002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2003-04-17T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Weak convergence under nonlinearities
title Weak convergence under nonlinearities
spellingShingle Weak convergence under nonlinearities
MOREIRA,DIEGO R.
weak continuity
nonlinearities
Nemytskii operator
title_short Weak convergence under nonlinearities
title_full Weak convergence under nonlinearities
title_fullStr Weak convergence under nonlinearities
title_full_unstemmed Weak convergence under nonlinearities
title_sort Weak convergence under nonlinearities
author MOREIRA,DIEGO R.
author_facet MOREIRA,DIEGO R.
TEIXEIRA,EDUARDO V. O.
author_role author
author2 TEIXEIRA,EDUARDO V. O.
author2_role author
dc.contributor.author.fl_str_mv MOREIRA,DIEGO R.
TEIXEIRA,EDUARDO V. O.
dc.subject.por.fl_str_mv weak continuity
nonlinearities
Nemytskii operator
topic weak continuity
nonlinearities
Nemytskii operator
description In this paper, we prove that if a Nemytskii operator maps Lp(omega, E) into Lq(omega, F), for p, q greater than 1, E, F separable Banach spaces and F reflexive, then a sequence that converge weakly and a.e. is sent to a weakly convergent sequence. We give a counterexample proving that if q = 1 and p is greater than 1 we may not have weak sequential continuity of such operator. However, we prove that if p = q = 1, then a weakly convergent sequence that converges a.e. is mapped into a weakly convergent sequence by a Nemytskii operator. We show an application of the weak continuity of the Nemytskii operators by solving a nonlinear functional equation on W1,p(omega), providing the weak continuity of some kind of resolvent operator associated to it and getting a regularity result for such solution.
publishDate 2003
dc.date.none.fl_str_mv 2003-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000100002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000100002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652003000100002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.75 n.1 2003
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302855800422401