On the existence of Levi Foliations

Detalhes bibliográficos
Autor(a) principal: OSTWALD,RENATA N.
Data de Publicação: 2001
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000100002
Resumo: Let L <img src="http:/img/fbpe/aabc/v73n1/0059c.gif"> <img src="http:/img/fbpe/aabc/v73n1/0059c2.gif"> be a real 3 dimensional analytic variety. For each regular point p <img src="http:/img/fbpe/aabc/v73n1/0059e.gif"> L there exists a unique complex line l p on the space tangent to L at p. When the field of complex line p <img ALIGN="MIDDLE" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img4.gif" ALT="$\displaystyle \mapsto$"> l p is completely integrable, we say that L is Levi variety. More generally; let L <img src="http:/img/fbpe/aabc/v73n1/0059c.gif"> M be a real subvariety in an holomorphic complex variety M. If there exists a real 2 dimensional integrable distribution on L which is invariant by the holomorphic structure J induced by M, we say that L is a Levi variety. We shall prove: Theorem. Let <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> be a Levi foliation and let <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> be the induced holomorphic foliation. Then, <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> admits a Liouvillian first integral. In other words, if <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> is a 3 dimensional analytic foliation such that the induced complex distribution defines an holomorphic foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$">; that is, if <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> is a Levi foliation; then <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> admits a Liouvillian first integral--a function which can be constructed by the composition of rational functions, exponentiation, integration, and algebraic functions (Singer 1992). For example, if f is an holomorphic function and if theta is real a 1-form on <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img8.gif" ALT="$ \mathbb {R}$">; then the pull-back of theta by f defines a Levi foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> : f*theta = 0 which is tangent to the holomorphic foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> : df = 0. This problem was proposed by D. Cerveau in a meeting (see Fernandez 1997).
id ABC-1_a7a5afafde21546b826fdadeffe94548
oai_identifier_str oai:scielo:S0001-37652001000100002
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling On the existence of Levi FoliationsLevi foliationsholomorphic foliationssingularitiesLevi varietiesLet L <img src="http:/img/fbpe/aabc/v73n1/0059c.gif"> <img src="http:/img/fbpe/aabc/v73n1/0059c2.gif"> be a real 3 dimensional analytic variety. For each regular point p <img src="http:/img/fbpe/aabc/v73n1/0059e.gif"> L there exists a unique complex line l p on the space tangent to L at p. When the field of complex line p <img ALIGN="MIDDLE" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img4.gif" ALT="$\displaystyle \mapsto$"> l p is completely integrable, we say that L is Levi variety. More generally; let L <img src="http:/img/fbpe/aabc/v73n1/0059c.gif"> M be a real subvariety in an holomorphic complex variety M. If there exists a real 2 dimensional integrable distribution on L which is invariant by the holomorphic structure J induced by M, we say that L is a Levi variety. We shall prove: Theorem. Let <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> be a Levi foliation and let <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> be the induced holomorphic foliation. Then, <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> admits a Liouvillian first integral. In other words, if <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> is a 3 dimensional analytic foliation such that the induced complex distribution defines an holomorphic foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$">; that is, if <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> is a Levi foliation; then <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> admits a Liouvillian first integral--a function which can be constructed by the composition of rational functions, exponentiation, integration, and algebraic functions (Singer 1992). For example, if f is an holomorphic function and if theta is real a 1-form on <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img8.gif" ALT="$ \mathbb {R}$">; then the pull-back of theta by f defines a Levi foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> : f*theta = 0 which is tangent to the holomorphic foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> : df = 0. This problem was proposed by D. Cerveau in a meeting (see Fernandez 1997).Academia Brasileira de Ciências2001-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000100002Anais da Academia Brasileira de Ciências v.73 n.1 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000100002info:eu-repo/semantics/openAccessOSTWALD,RENATA N.eng2001-03-09T00:00:00Zoai:scielo:S0001-37652001000100002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-03-09T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv On the existence of Levi Foliations
title On the existence of Levi Foliations
spellingShingle On the existence of Levi Foliations
OSTWALD,RENATA N.
Levi foliations
holomorphic foliations
singularities
Levi varieties
title_short On the existence of Levi Foliations
title_full On the existence of Levi Foliations
title_fullStr On the existence of Levi Foliations
title_full_unstemmed On the existence of Levi Foliations
title_sort On the existence of Levi Foliations
author OSTWALD,RENATA N.
author_facet OSTWALD,RENATA N.
author_role author
dc.contributor.author.fl_str_mv OSTWALD,RENATA N.
dc.subject.por.fl_str_mv Levi foliations
holomorphic foliations
singularities
Levi varieties
topic Levi foliations
holomorphic foliations
singularities
Levi varieties
description Let L <img src="http:/img/fbpe/aabc/v73n1/0059c.gif"> <img src="http:/img/fbpe/aabc/v73n1/0059c2.gif"> be a real 3 dimensional analytic variety. For each regular point p <img src="http:/img/fbpe/aabc/v73n1/0059e.gif"> L there exists a unique complex line l p on the space tangent to L at p. When the field of complex line p <img ALIGN="MIDDLE" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img4.gif" ALT="$\displaystyle \mapsto$"> l p is completely integrable, we say that L is Levi variety. More generally; let L <img src="http:/img/fbpe/aabc/v73n1/0059c.gif"> M be a real subvariety in an holomorphic complex variety M. If there exists a real 2 dimensional integrable distribution on L which is invariant by the holomorphic structure J induced by M, we say that L is a Levi variety. We shall prove: Theorem. Let <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> be a Levi foliation and let <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> be the induced holomorphic foliation. Then, <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> admits a Liouvillian first integral. In other words, if <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> is a 3 dimensional analytic foliation such that the induced complex distribution defines an holomorphic foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$">; that is, if <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> is a Levi foliation; then <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> admits a Liouvillian first integral--a function which can be constructed by the composition of rational functions, exponentiation, integration, and algebraic functions (Singer 1992). For example, if f is an holomorphic function and if theta is real a 1-form on <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img8.gif" ALT="$ \mathbb {R}$">; then the pull-back of theta by f defines a Levi foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img5.gif" ALT="$ \cal {L}$"> : f*theta = 0 which is tangent to the holomorphic foliation <img ALIGN="BOTTOM" BORDER="0" src="http:/img/fbpe/aabc/v73n1/0059img6.gif" ALT="$ \cal {F}$"> : df = 0. This problem was proposed by D. Cerveau in a meeting (see Fernandez 1997).
publishDate 2001
dc.date.none.fl_str_mv 2001-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000100002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000100002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652001000100002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.73 n.1 2001
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302855447052288