A new qualitative proof of a result on the real jacobian conjecture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401519 |
Resumo: | Let F= (f, g) : R2 → R2be a polynomial map such that det DF(x) is different from zero for all x∈ R2. We assume that the degrees of fand gare equal. We denote by the homogeneous part of higher degree of f and g, respectively. In this note we provide a proof relied on qualitative theory of differential equations of the following result: If do not have real linear factors in common, then F is injective. |
id |
ABC-1_c7d7bd35c53733a95c40fed6b656fd12 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652015000401519 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
A new qualitative proof of a result on the real jacobian conjectureReal Jacobian conjectureglobal injectivitycenterPoincaré compactificationLet F= (f, g) : R2 → R2be a polynomial map such that det DF(x) is different from zero for all x∈ R2. We assume that the degrees of fand gare equal. We denote by the homogeneous part of higher degree of f and g, respectively. In this note we provide a proof relied on qualitative theory of differential equations of the following result: If do not have real linear factors in common, then F is injective.Academia Brasileira de Ciências2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401519Anais da Academia Brasileira de Ciências v.87 n.3 2015reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201520130408info:eu-repo/semantics/openAccessBRAUN,FRANCISCOLLIBRE,JAUMEeng2015-09-22T00:00:00Zoai:scielo:S0001-37652015000401519Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2015-09-22T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
A new qualitative proof of a result on the real jacobian conjecture |
title |
A new qualitative proof of a result on the real jacobian conjecture |
spellingShingle |
A new qualitative proof of a result on the real jacobian conjecture BRAUN,FRANCISCO Real Jacobian conjecture global injectivity center Poincaré compactification |
title_short |
A new qualitative proof of a result on the real jacobian conjecture |
title_full |
A new qualitative proof of a result on the real jacobian conjecture |
title_fullStr |
A new qualitative proof of a result on the real jacobian conjecture |
title_full_unstemmed |
A new qualitative proof of a result on the real jacobian conjecture |
title_sort |
A new qualitative proof of a result on the real jacobian conjecture |
author |
BRAUN,FRANCISCO |
author_facet |
BRAUN,FRANCISCO LLIBRE,JAUME |
author_role |
author |
author2 |
LLIBRE,JAUME |
author2_role |
author |
dc.contributor.author.fl_str_mv |
BRAUN,FRANCISCO LLIBRE,JAUME |
dc.subject.por.fl_str_mv |
Real Jacobian conjecture global injectivity center Poincaré compactification |
topic |
Real Jacobian conjecture global injectivity center Poincaré compactification |
description |
Let F= (f, g) : R2 → R2be a polynomial map such that det DF(x) is different from zero for all x∈ R2. We assume that the degrees of fand gare equal. We denote by the homogeneous part of higher degree of f and g, respectively. In this note we provide a proof relied on qualitative theory of differential equations of the following result: If do not have real linear factors in common, then F is injective. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401519 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401519 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201520130408 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.87 n.3 2015 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302861521453056 |