The length of the second fundamental form, a tangency principle and applications

Detalhes bibliográficos
Autor(a) principal: Fontenele,Francisco X.
Data de Publicação: 2004
Outros Autores: Silva,Sérgio L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001
Resumo: In this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric applications, we make radius estimates of the balls that lie in some component of the complementary of a complete hypersurface into Euclidean space, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The basic tool established here is that some operator is elliptic at points where the second fundamental form is positive definite.
id ABC-1_d73d7a8d71264003161e6792d4730fb6
oai_identifier_str oai:scielo:S0001-37652004000100001
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling The length of the second fundamental form, a tangency principle and applicationshypersurfacestangency principlesecond fundamental formballsradius estimatesIn this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric applications, we make radius estimates of the balls that lie in some component of the complementary of a complete hypersurface into Euclidean space, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The basic tool established here is that some operator is elliptic at points where the second fundamental form is positive definite.Academia Brasileira de Ciências2004-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001Anais da Academia Brasileira de Ciências v.76 n.1 2004reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652004000100001info:eu-repo/semantics/openAccessFontenele,Francisco X.Silva,Sérgio L.eng2004-02-17T00:00:00Zoai:scielo:S0001-37652004000100001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2004-02-17T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv The length of the second fundamental form, a tangency principle and applications
title The length of the second fundamental form, a tangency principle and applications
spellingShingle The length of the second fundamental form, a tangency principle and applications
Fontenele,Francisco X.
hypersurfaces
tangency principle
second fundamental form
balls
radius estimates
title_short The length of the second fundamental form, a tangency principle and applications
title_full The length of the second fundamental form, a tangency principle and applications
title_fullStr The length of the second fundamental form, a tangency principle and applications
title_full_unstemmed The length of the second fundamental form, a tangency principle and applications
title_sort The length of the second fundamental form, a tangency principle and applications
author Fontenele,Francisco X.
author_facet Fontenele,Francisco X.
Silva,Sérgio L.
author_role author
author2 Silva,Sérgio L.
author2_role author
dc.contributor.author.fl_str_mv Fontenele,Francisco X.
Silva,Sérgio L.
dc.subject.por.fl_str_mv hypersurfaces
tangency principle
second fundamental form
balls
radius estimates
topic hypersurfaces
tangency principle
second fundamental form
balls
radius estimates
description In this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric applications, we make radius estimates of the balls that lie in some component of the complementary of a complete hypersurface into Euclidean space, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The basic tool established here is that some operator is elliptic at points where the second fundamental form is positive definite.
publishDate 2004
dc.date.none.fl_str_mv 2004-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652004000100001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.76 n.1 2004
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302856073052160