The length of the second fundamental form, a tangency principle and applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001 |
Resumo: | In this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric applications, we make radius estimates of the balls that lie in some component of the complementary of a complete hypersurface into Euclidean space, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The basic tool established here is that some operator is elliptic at points where the second fundamental form is positive definite. |
id |
ABC-1_d73d7a8d71264003161e6792d4730fb6 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652004000100001 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
The length of the second fundamental form, a tangency principle and applicationshypersurfacestangency principlesecond fundamental formballsradius estimatesIn this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric applications, we make radius estimates of the balls that lie in some component of the complementary of a complete hypersurface into Euclidean space, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The basic tool established here is that some operator is elliptic at points where the second fundamental form is positive definite.Academia Brasileira de Ciências2004-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001Anais da Academia Brasileira de Ciências v.76 n.1 2004reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652004000100001info:eu-repo/semantics/openAccessFontenele,Francisco X.Silva,Sérgio L.eng2004-02-17T00:00:00Zoai:scielo:S0001-37652004000100001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2004-02-17T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
The length of the second fundamental form, a tangency principle and applications |
title |
The length of the second fundamental form, a tangency principle and applications |
spellingShingle |
The length of the second fundamental form, a tangency principle and applications Fontenele,Francisco X. hypersurfaces tangency principle second fundamental form balls radius estimates |
title_short |
The length of the second fundamental form, a tangency principle and applications |
title_full |
The length of the second fundamental form, a tangency principle and applications |
title_fullStr |
The length of the second fundamental form, a tangency principle and applications |
title_full_unstemmed |
The length of the second fundamental form, a tangency principle and applications |
title_sort |
The length of the second fundamental form, a tangency principle and applications |
author |
Fontenele,Francisco X. |
author_facet |
Fontenele,Francisco X. Silva,Sérgio L. |
author_role |
author |
author2 |
Silva,Sérgio L. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fontenele,Francisco X. Silva,Sérgio L. |
dc.subject.por.fl_str_mv |
hypersurfaces tangency principle second fundamental form balls radius estimates |
topic |
hypersurfaces tangency principle second fundamental form balls radius estimates |
description |
In this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric applications, we make radius estimates of the balls that lie in some component of the complementary of a complete hypersurface into Euclidean space, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The basic tool established here is that some operator is elliptic at points where the second fundamental form is positive definite. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000100001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652004000100001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.76 n.1 2004 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302856073052160 |