Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles

Detalhes bibliográficos
Autor(a) principal: Narsilio,Guillermo A.
Data de Publicação: 2010
Outros Autores: Smith,David W., Pivonka,Peter
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000100003
Resumo: Given a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we investigate the particle level responses of the clay to different external loadings. As analytical solutions are not possible for complex arrangements of particles, we employ computational micromechanical models (based on the solution of the Poisson-Nernst-Planck equations) using the finite element method, to estimate counterion and electrical potential distributions for particles at various angles and distances from one another. We then calculate the disjoining pressures using the Van't Hoff relation and Maxwell stress tensor. As the distance between the clay particles decreases and double-layers overlap, the concentration of counterions in the micropores among clay particles increases. This increase lowers the chemical potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the socalled 'disjoining' or 'osmotic' pressure. Because of this disjoining pressure, particles do not need to contact one another in order to carry an 'effective stress'. This work may lead towards theoretical predictions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical modelling of particles.
id ABC-1_e0d0e876b3e76cf73f26067414c8f2f9
oai_identifier_str oai:scielo:S0001-37652010000100003
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Estimating vertical and lateral pressures in periodically structured montmorillonite clay particlesclayMaxwell tensorPoisson-Nernst-Planck equationpore-scaleswellingvan't Hoff lawGiven a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we investigate the particle level responses of the clay to different external loadings. As analytical solutions are not possible for complex arrangements of particles, we employ computational micromechanical models (based on the solution of the Poisson-Nernst-Planck equations) using the finite element method, to estimate counterion and electrical potential distributions for particles at various angles and distances from one another. We then calculate the disjoining pressures using the Van't Hoff relation and Maxwell stress tensor. As the distance between the clay particles decreases and double-layers overlap, the concentration of counterions in the micropores among clay particles increases. This increase lowers the chemical potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the socalled 'disjoining' or 'osmotic' pressure. Because of this disjoining pressure, particles do not need to contact one another in order to carry an 'effective stress'. This work may lead towards theoretical predictions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical modelling of particles.Academia Brasileira de Ciências2010-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000100003Anais da Academia Brasileira de Ciências v.82 n.1 2010reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652010000100003info:eu-repo/semantics/openAccessNarsilio,Guillermo A.Smith,David W.Pivonka,Petereng2010-02-25T00:00:00Zoai:scielo:S0001-37652010000100003Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2010-02-25T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
title Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
spellingShingle Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
Narsilio,Guillermo A.
clay
Maxwell tensor
Poisson-Nernst-Planck equation
pore-scale
swelling
van't Hoff law
title_short Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
title_full Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
title_fullStr Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
title_full_unstemmed Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
title_sort Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles
author Narsilio,Guillermo A.
author_facet Narsilio,Guillermo A.
Smith,David W.
Pivonka,Peter
author_role author
author2 Smith,David W.
Pivonka,Peter
author2_role author
author
dc.contributor.author.fl_str_mv Narsilio,Guillermo A.
Smith,David W.
Pivonka,Peter
dc.subject.por.fl_str_mv clay
Maxwell tensor
Poisson-Nernst-Planck equation
pore-scale
swelling
van't Hoff law
topic clay
Maxwell tensor
Poisson-Nernst-Planck equation
pore-scale
swelling
van't Hoff law
description Given a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we investigate the particle level responses of the clay to different external loadings. As analytical solutions are not possible for complex arrangements of particles, we employ computational micromechanical models (based on the solution of the Poisson-Nernst-Planck equations) using the finite element method, to estimate counterion and electrical potential distributions for particles at various angles and distances from one another. We then calculate the disjoining pressures using the Van't Hoff relation and Maxwell stress tensor. As the distance between the clay particles decreases and double-layers overlap, the concentration of counterions in the micropores among clay particles increases. This increase lowers the chemical potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the socalled 'disjoining' or 'osmotic' pressure. Because of this disjoining pressure, particles do not need to contact one another in order to carry an 'effective stress'. This work may lead towards theoretical predictions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical modelling of particles.
publishDate 2010
dc.date.none.fl_str_mv 2010-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652010000100003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.82 n.1 2010
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302857566224384