Cell swelling and ion redistribution assessed with intrinsic optical signals

Detalhes bibliográficos
Autor(a) principal: WITTE,OTTO W.
Data de Publicação: 2001
Outros Autores: NIERMANN,HEIKE, HOLTHOFF,KNUT
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300005
Resumo: Cell volume changes are associated with alterations of intrinsic optical signals (IOS). In submerged brain slices in vitro, afferent stimulation induces an increase in light transmission. As assessed by measurement of the largely membrane impermeant ion tetramethylammonium (TMA) in the extracellular space, these IOS correlate with the extent and time course of the change of the extracellular space size. They have a high signal to noise ratio and allow measurements of IOS changes in the order of a few percent. Under conditions of reduced net KCl uptake (low Cl solution) a directed spatial buffer mechanism (K syphoning) can be demonstrated in the neocortex with widening of the extracellular space in superficial layers associated with a reduced light transmission and an increase of extracellular K concentration. The nature of the IOS under pathophysiological conditions is less clear. Spreading depressions first cause an increase of light transmission, then a decrease. Such a decrease has also been observed following application of NMDA where it was associated with structural damage. Pharmacological analyses suggest that under physiological conditions changes of extracellular space size are mainly caused by astrocytic volume changes while with strong stimuli and under pathophysiological conditions also neuronal swelling occurs. With reflected light usually signals opposite to those observed with transmitted light are seen. Recording of IOS from interface slices gives very complex signals since under these conditions an increase of light transmission has been reported to be superimposed by a decrease of the signal due to mechanical lensing effects of the slice surface. Depending on the method of measurement and the exact conditions, several mechanisms may contribute to IOS. Under well defined conditions IOS are a useful supplementary tool to monitor changes of extracellular volume both in space and time.
id ABC-1_e2a79d5a2ca2ec62353d0715382ca61b
oai_identifier_str oai:scielo:S0001-37652001000300005
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Cell swelling and ion redistribution assessed with intrinsic optical signalsintrinsic optic signalsspatial bufferbrain sliceextracellular space volumespreading depressionCell volume changes are associated with alterations of intrinsic optical signals (IOS). In submerged brain slices in vitro, afferent stimulation induces an increase in light transmission. As assessed by measurement of the largely membrane impermeant ion tetramethylammonium (TMA) in the extracellular space, these IOS correlate with the extent and time course of the change of the extracellular space size. They have a high signal to noise ratio and allow measurements of IOS changes in the order of a few percent. Under conditions of reduced net KCl uptake (low Cl solution) a directed spatial buffer mechanism (K syphoning) can be demonstrated in the neocortex with widening of the extracellular space in superficial layers associated with a reduced light transmission and an increase of extracellular K concentration. The nature of the IOS under pathophysiological conditions is less clear. Spreading depressions first cause an increase of light transmission, then a decrease. Such a decrease has also been observed following application of NMDA where it was associated with structural damage. Pharmacological analyses suggest that under physiological conditions changes of extracellular space size are mainly caused by astrocytic volume changes while with strong stimuli and under pathophysiological conditions also neuronal swelling occurs. With reflected light usually signals opposite to those observed with transmitted light are seen. Recording of IOS from interface slices gives very complex signals since under these conditions an increase of light transmission has been reported to be superimposed by a decrease of the signal due to mechanical lensing effects of the slice surface. Depending on the method of measurement and the exact conditions, several mechanisms may contribute to IOS. Under well defined conditions IOS are a useful supplementary tool to monitor changes of extracellular volume both in space and time.Academia Brasileira de Ciências2001-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300005Anais da Academia Brasileira de Ciências v.73 n.3 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000300005info:eu-repo/semantics/openAccessWITTE,OTTO W.NIERMANN,HEIKEHOLTHOFF,KNUTeng2001-10-05T00:00:00Zoai:scielo:S0001-37652001000300005Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-10-05T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Cell swelling and ion redistribution assessed with intrinsic optical signals
title Cell swelling and ion redistribution assessed with intrinsic optical signals
spellingShingle Cell swelling and ion redistribution assessed with intrinsic optical signals
WITTE,OTTO W.
intrinsic optic signals
spatial buffer
brain slice
extracellular space volume
spreading depression
title_short Cell swelling and ion redistribution assessed with intrinsic optical signals
title_full Cell swelling and ion redistribution assessed with intrinsic optical signals
title_fullStr Cell swelling and ion redistribution assessed with intrinsic optical signals
title_full_unstemmed Cell swelling and ion redistribution assessed with intrinsic optical signals
title_sort Cell swelling and ion redistribution assessed with intrinsic optical signals
author WITTE,OTTO W.
author_facet WITTE,OTTO W.
NIERMANN,HEIKE
HOLTHOFF,KNUT
author_role author
author2 NIERMANN,HEIKE
HOLTHOFF,KNUT
author2_role author
author
dc.contributor.author.fl_str_mv WITTE,OTTO W.
NIERMANN,HEIKE
HOLTHOFF,KNUT
dc.subject.por.fl_str_mv intrinsic optic signals
spatial buffer
brain slice
extracellular space volume
spreading depression
topic intrinsic optic signals
spatial buffer
brain slice
extracellular space volume
spreading depression
description Cell volume changes are associated with alterations of intrinsic optical signals (IOS). In submerged brain slices in vitro, afferent stimulation induces an increase in light transmission. As assessed by measurement of the largely membrane impermeant ion tetramethylammonium (TMA) in the extracellular space, these IOS correlate with the extent and time course of the change of the extracellular space size. They have a high signal to noise ratio and allow measurements of IOS changes in the order of a few percent. Under conditions of reduced net KCl uptake (low Cl solution) a directed spatial buffer mechanism (K syphoning) can be demonstrated in the neocortex with widening of the extracellular space in superficial layers associated with a reduced light transmission and an increase of extracellular K concentration. The nature of the IOS under pathophysiological conditions is less clear. Spreading depressions first cause an increase of light transmission, then a decrease. Such a decrease has also been observed following application of NMDA where it was associated with structural damage. Pharmacological analyses suggest that under physiological conditions changes of extracellular space size are mainly caused by astrocytic volume changes while with strong stimuli and under pathophysiological conditions also neuronal swelling occurs. With reflected light usually signals opposite to those observed with transmitted light are seen. Recording of IOS from interface slices gives very complex signals since under these conditions an increase of light transmission has been reported to be superimposed by a decrease of the signal due to mechanical lensing effects of the slice surface. Depending on the method of measurement and the exact conditions, several mechanisms may contribute to IOS. Under well defined conditions IOS are a useful supplementary tool to monitor changes of extracellular volume both in space and time.
publishDate 2001
dc.date.none.fl_str_mv 2001-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652001000300005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.73 n.3 2001
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302855483752448